【论文简述】DSC-MVSNet: attention aware cost volume regularization based ondepthwise separable(CIS 2023)-程序员宅基地

技术标签: 3D重建  MVS  通道注意力  深度可分离卷积  

一、论文简述

1. 第一作者:Song Zhang

2. 发表年份:2023

3. 发表期刊:Complex & Intelligent Systems

4. 关键词:MVS、三维重建、深度可分离卷积、通道注意力

5. 探索动机:基于深度学习的MVS方法很难平衡效率和有效性。

6. 工作目标:如何在保持效果的情况下显著减少计算量是研究的主要问题。

7. 核心思想:We propose the DSCMVSNet, a novel coarse-to-fine and end-to-end framework for more efficient and more accurate depth estimation in MVS.

  1. We propose a 3D UNet-shape network and firstly use the depthwise separable convolution for 3D cost volume regularization, which can effectively improve the model efficiency with performance maintained.
  2. We propose a 3D-Attention module to enhance the ability in cost volume regularization to fully aggregate the valuable information of cost volume and alleviate the problem of feature mismatching.
  3. We proposed an effective and efficient feature transfer module to upsample the LR depth map to obtain the HR depth map to achieve higher quality reconstruction.

8. 实验结果:

The proposed method outperforms the state-of-the-art method in dynamic areas with a significant error reduction of 21.3% while retaining its superiority in overall performance on KITTI. It also achieves the best generalization ability on the DDAD dataset in dynamic areas than the competing methods.

9.论文下载:

https://link.springer.com/content/pdf/10.1007/s40747-023-01106-3.pdf?pdf=button

https://github.com/zs670980918/DSC-MVSNet

二、实现过程

1. 总述

  1. 使用信息特征提取网络来提取相应的特征;
  2. 使用DSC-Attention 3D UNet来正则化粗糙代价体C×D×1/8H×1/8W;
  3. 使用特征转移模块来将LR深度图Ds∈1×1/8H×1/8W上采样到HR深度图Dd∈1×1/4H×1/4W;
  4. 利用输入图像和HR深度图,通过高斯牛顿网络层,得到改进后的深度图Dr∈1×1/4H×1/4W;
  5. 最后将改进后的深度图进行融合,得到点云。

2. 三维深度可分离卷积(3D-DSC)

将3D CNN分为3D depthwise卷积(depthwise是深度维度,可以对深度维度的代价体信息进行代价聚合)和3D pointwise卷积(pointwise是空间维度,在空间维度对代价体信息进行代价聚合)。 

3D depthwise convolution。在每个通道的代价体上独立进行3D深度卷积,得到与通道无关的中间特征图,定义如式:

式中W1表示三维深度卷积的权值,V∈C×D×H×W表示代价体,i, j, u表示位置索引,K, L, M表示卷积的核大小。

3D pointwise convolution。3D逐点卷积作用于这些与通道无关的特征图,以聚合通道相关的信息,如定义:

 式中,W2表示三维点向卷积的权值,V∈C×D×H×W表示中间特征图,N表示卷积的核大小。

这两个卷积依次执行,形成一个完整的卷积。其数学表达式定义为式:

本文将3D-DSC正则化方案与其他主流正则化方案进行了理论比较,证明了该方案的有效性。用青色表示体素的感受野。水平是深度尺寸,垂直是通道尺寸。H和W分别表示高度和宽度。在这个图中,设H和W为一维。

 (a)空间正则化(spatial Regularization, SR),它过滤了不同深度的代价体。然而,由于感受野较小,SR的正则化结果受到很大影响;(b) 3D CNN正则化(3D-CNN),利用3D CNN获得更大的感受野进行代价体正则化。但它带来了更多的计算成本;(c)递归正则化是一种基于RNN的方法,提出了顺序处理,将代价体划分为与深度无关的代价图,以降低计算成本;(d)3D-DSC正则化是一种基于DSC的方法,将代价体分割成中间特征图,然后应用逐点卷积来建立这些中间特征图之间的关系,以保持模型的性能。与SR相比,我们的方法可以获得更大的接受野,而3D CNN正则化可以获得更好的性能,但也会带来更高的计算成本。然后比较了3D-DSC和3DCNN的效率。

3. 3D注意力模块(3DA)

3D-DSC虽然可以有效地聚合代价体信息,但仍然存在影响代价体质量的特征不匹配问题。当不同关键点的特征被错误匹配时,就会出现特征不匹配问题,这将导致代价体在不同深度处有相似置信度,最终导致深度估计不准确。具体而言,如图3下图所示,一个参考特征在不同深度匹配两个相似的源特征(佛像的两只手),不同深度的置信度在代价体上相似。这些相似的置信度将影响深度图的质量。并利用3DA来缓解这一问题。红色体素表示相似置信度;淡红色表示置信度减弱。

由于注意力机制可以通过计算不同的权重来突出重要信息,因此使用注意力机制来解决特征不匹配问题。3D注意力由两个模块组成,通过利用整个代价体的信息计算注意力权重来增强或削弱不同深度的相似的置信度,从而缓解了这一问题。

通道注意力块。通道注意力块对通道信息执行注意力。它由一个多层感知器(MLP)构造,作用于代价体V∈C×D×H×W的通道,以获得通道注意力增强权值Wˆ。将通道权值W与代价体V相乘,得到通道改进的代价体V‘∈C×D×H×W。通道注意力块定义为:

其中Max Pool为最大池化,AvgPool为平均池化。W∈C为通道注意力增强权值,两部分均共享MLP的权值。

空间深度注意力块。与普通注意力使用全感知(不区分空间和深度)不同,空间深度注意力块根据代价体的构成从两个不同维度感知代价信息,如:空间和深度。首先,使用核大小为1×7×7(相同深度的不同位置)的面向空间的各向异性卷积沿空间方向过滤代价体,以在保持相同深度的有用匹配信息的同时降低噪声。它为下一次面向深度的卷积提供了更准确的空间信息。然后用核大小为7×1×1(同一位置不同深度)的面向深度的各向异性卷积作用于深度维度,有效增强或减弱同一空间位置不同深度的匹配信息。最后,使用核大小为7×7×7的各向同性卷积,作用于多维(空间,深度),以充分聚合上述过程的信息。空间深度注意块的公式定义为:

式中σ为激活函数;W ̄∈1×D×H×W为空间深度权重;f1×7×7是空间向卷积,f7×1×1是深度向卷积,f7×7×7是整体卷积。 

将这两个模块级联形成一个3D注意力模块,公式定义如下:

正则化后,在深度方向上使用softmax操作对[0,1]之间的所有值进行回归,形成深度估计的概率体P。最后,将不同深度假设平面值与概率体P相乘,得到LR深度图D~s。公式为:

4. 特征传输模块

上采样获得的高分辨率深度图直接影响点云结果的质量。为了获得高分辨率和精确的深度图,提出了一种用于低分辨率(LR)深度图上采样的特征传输模块(FTM)。

FTM的输入是一个三通道的参考图像I0∈3×H×W和单通道LR深度图Ds∈1×1/8H×1/8W。为了统一输入的尺度,首先使用双三次插值算法对LR深度图Ds进行上采样,得到更大尺度的深度图D~s∈1×1/4H×1/4W。将参考图像下采样为16通道图像I0∈16×1/4H×1/4W。在统一之后,提出了一个共同的偏移量和权重提取主干来获得参考图像和深度图的偏移量。该主干包含一个七层卷积特征提取网络、一个偏移卷积、一个权重卷积和一个sigmoid层。该主干定义为:

式中,fFE表示提取网络,foc表示偏移卷积,fwc表示权卷积,sigmoid表示sigmoid层。 

然后使用OWC Block来计算权重∈k2/16×1/4H×1/4W和偏移∈k2/8×1/4H×1/4W,用于引导深度图上采样,其中k是一个超参数,设置k=12。具体来说,将相应的偏移量和权重相乘,然后通过PixelShuffle传递结果来获得目标偏移量和权重。然后利用偏移量引导特征采样,并将采样的特征与权值相乘得到最终结果。最后,通过残差相加块得到HR深度图。将上述过程的方程定义为:

其中fps表示PyTorch的的PixelShuffle操作,fgs表示grid_sample函数,Dres表示深度残差。

5. 信息特征提取网络

之前的方法很多仅使用顺序卷积操作从输入图像{Ii}i提取特征映射,这些图像只包含高级语义信息。低层次空间信息的丢失会影响重建结果的质量。因此,提出了一种利用跳跃连接传播低层次空间信息来聚合多层次特征信息的信息特征提取网络。这个网络有三个组件(Encoder, Decoder, Adjuster),架构如下表所示。每个卷积层代表一个卷积块、批归一化(BN)和ReLU。“sp”表示跳跃连接。

6. 代价体构建

定义为:

Vi是所有特征体的平均体。

7. 深度图改进

前一步得到的深度图质量不足,需要进一步改进。而在Fast-MVSNet中,高斯牛顿网络层是一种有效且高效的深度图改进模块。因此,使用高斯网络层对深度图改进图D∈1×1/4H×1/4W,用于MVS重建。

8. 训练损失

计算预测深度图与真实深度图之间的平均绝对值误差作为训练损失,如:

式中,D~d为HR深度图,D~r为改进后的深度图,D~为真实深度图,pvalid为真实深度图的有效点集,λ用于平衡loss1(p)和loss2(p)。在训练过程中,通常将λ设置为1.0。

9. 实验

9.1. 实现细节

设置RMSProp优化器,初始学习率设置为0.0008,每个epoch的衰减权值设为0.002。批大小设置为16,并在6个NVIDIA GTX 2080ti GPU设备上进行训练。

9.2. 与先进技术的比较

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_43307074/article/details/132101021

智能推荐

874计算机科学基础综合,2018年四川大学874计算机科学专业基础综合之计算机操作系统考研仿真模拟五套题...-程序员宅基地

文章浏览阅读1.1k次。一、选择题1. 串行接口是指( )。A. 接口与系统总线之间串行传送,接口与I/0设备之间串行传送B. 接口与系统总线之间串行传送,接口与1/0设备之间并行传送C. 接口与系统总线之间并行传送,接口与I/0设备之间串行传送D. 接口与系统总线之间并行传送,接口与I/0设备之间并行传送【答案】C2. 最容易造成很多小碎片的可变分区分配算法是( )。A. 首次适应算法B. 最佳适应算法..._874 计算机科学专业基础综合题型

XShell连接失败:Could not connect to '192.168.191.128' (port 22): Connection failed._could not connect to '192.168.17.128' (port 22): c-程序员宅基地

文章浏览阅读9.7k次,点赞5次,收藏15次。连接xshell失败,报错如下图,怎么解决呢。1、通过ps -e|grep ssh命令判断是否安装ssh服务2、如果只有客户端安装了,服务器没有安装,则需要安装ssh服务器,命令:apt-get install openssh-server3、安装成功之后,启动ssh服务,命令:/etc/init.d/ssh start4、通过ps -e|grep ssh命令再次判断是否正确启动..._could not connect to '192.168.17.128' (port 22): connection failed.

杰理之KeyPage【篇】_杰理 空白芯片 烧入key文件-程序员宅基地

文章浏览阅读209次。00000000_杰理 空白芯片 烧入key文件

一文读懂ChatGPT,满足你对chatGPT的好奇心_引发对chatgpt兴趣的表述-程序员宅基地

文章浏览阅读475次。2023年初,“ChatGPT”一词在社交媒体上引起了热议,人们纷纷探讨它的本质和对社会的影响。就连央视新闻也对此进行了报道。作为新传专业的前沿人士,我们当然不能忽视这一热点。本文将全面解析ChatGPT,打开“技术黑箱”,探讨它对新闻与传播领域的影响。_引发对chatgpt兴趣的表述

中文字符频率统计python_用Python数据分析方法进行汉字声调频率统计分析-程序员宅基地

文章浏览阅读259次。用Python数据分析方法进行汉字声调频率统计分析木合塔尔·沙地克;布合力齐姑丽·瓦斯力【期刊名称】《电脑知识与技术》【年(卷),期】2017(013)035【摘要】该文首先用Python程序,自动获取基本汉字字符集中的所有汉字,然后用汉字拼音转换工具pypinyin把所有汉字转换成拼音,最后根据所有汉字的拼音声调,统计并可视化拼音声调的占比.【总页数】2页(13-14)【关键词】数据分析;数据可..._汉字声调频率统计

linux输出信息调试信息重定向-程序员宅基地

文章浏览阅读64次。最近在做一个android系统移植的项目,所使用的开发板com1是调试串口,就是说会有uboot和kernel的调试信息打印在com1上(ttySAC0)。因为后期要使用ttySAC0作为上层应用通信串口,所以要把所有的调试信息都给去掉。参考网上的几篇文章,自己做了如下修改,终于把调试信息重定向到ttySAC1上了,在这做下记录。参考文章有:http://blog.csdn.net/longt..._嵌入式rootfs 输出重定向到/dev/console

随便推点

uniapp 引入iconfont图标库彩色symbol教程_uniapp symbol图标-程序员宅基地

文章浏览阅读1.2k次,点赞4次,收藏12次。1,先去iconfont登录,然后选择图标加入购物车 2,点击又上角车车添加进入项目我的项目中就会出现选择的图标 3,点击下载至本地,然后解压文件夹,然后切换到uniapp打开终端运行注:要保证自己电脑有安装node(没有安装node可以去官网下载Node.js 中文网)npm i -g iconfont-tools(mac用户失败的话在前面加个sudo,password就是自己的开机密码吧)4,终端切换到上面解压的文件夹里面,运行iconfont-tools 这些可以默认也可以自己命名(我是自己命名的_uniapp symbol图标

C、C++ 对于char*和char[]的理解_c++ char*-程序员宅基地

文章浏览阅读1.2w次,点赞25次,收藏192次。char*和char[]都是指针,指向第一个字符所在的地址,但char*是常量的指针,char[]是指针的常量_c++ char*

Sublime Text2 使用教程-程序员宅基地

文章浏览阅读930次。代码编辑器或者文本编辑器,对于程序员来说,就像剑与战士一样,谁都想拥有一把可以随心驾驭且锋利无比的宝剑,而每一位程序员,同样会去追求最适合自己的强大、灵活的编辑器,相信你和我一样,都不会例外。我用过的编辑器不少,真不少~ 但却没有哪款让我特别心仪的,直到我遇到了 Sublime Text 2 !如果说“神器”是我能给予一款软件最高的评价,那么我很乐意为它封上这么一个称号。它小巧绿色且速度非

对10个整数进行按照从小到大的顺序排序用选择法和冒泡排序_对十个数进行大小排序java-程序员宅基地

文章浏览阅读4.1k次。一、选择法这是每一个数出来跟后面所有的进行比较。2.冒泡排序法,是两个相邻的进行对比。_对十个数进行大小排序java

物联网开发笔记——使用网络调试助手连接阿里云物联网平台(基于MQTT协议)_网络调试助手连接阿里云连不上-程序员宅基地

文章浏览阅读2.9k次。物联网开发笔记——使用网络调试助手连接阿里云物联网平台(基于MQTT协议)其实作者本意是使用4G模块来实现与阿里云物联网平台的连接过程,但是由于自己用的4G模块自身的限制,使得阿里云连接总是无法建立,已经联系客服返厂检修了,于是我在此使用网络调试助手来演示如何与阿里云物联网平台建立连接。一.准备工作1.MQTT协议说明文档(3.1.1版本)2.网络调试助手(可使用域名与服务器建立连接)PS:与阿里云建立连解释,最好使用域名来完成连接过程,而不是使用IP号。这里我跟阿里云的售后工程师咨询过,表示对应_网络调试助手连接阿里云连不上

<<<零基础C++速成>>>_无c语言基础c++期末速成-程序员宅基地

文章浏览阅读544次,点赞5次,收藏6次。运算符与表达式任何高级程序设计语言中,表达式都是最基本的组成部分,可以说C++中的大部分语句都是由表达式构成的。_无c语言基础c++期末速成