神经网络--反向传播详细推导过程_神经网络反向传播算法推导-程序员宅基地

技术标签: Machine Learning  

概述

以监督学习为例,假设我们有训练样本集 \textstyle (x(^ i),y(^ i)) ,那么神经网络算法能够提供一种复杂且非线性的假设模型 \textstyle h_{W,b}(x) ,它具有参数 \textstyle W, b ,可以以此参数来拟合我们的数据。


为了描述神经网络,我们先从最简单的神经网络讲起,这个神经网络仅由一个“神经元”构成,以下即是这个“神经元”的图示:

SingleNeuron.png


这个“神经元”是一个以 \textstyle x_1, x_2, x_3 及截距 \textstyle +1 为输入值的运算单元,其输出为 \textstyle  h_{W,b}(x) = f(W^Tx) = f(\sum_{i=1}^3 W_{i}x_i +b) ,其中函数 \textstyle f : \Re \mapsto \Re 被称为“激活函数”。在本教程中,我们选用sigmoid函数作为激活函数 \textstyle f(\cdot)

f(z) = \frac{1}{1+\exp(-z)}.

可以看出,这个单一“神经元”的输入-输出映射关系其实就是一个逻辑回归(logistic regression)。


虽然本系列教程采用sigmoid函数,但你也可以选择双曲正切函数(tanh):


f(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}},

以下分别是sigmoid及tanh的函数图像

Sigmoid activation function. Tanh activation function.

\textstyle \tanh(z) 函数是sigmoid函数的一种变体,它的取值范围为 \textstyle [-1,1] ,而不是sigmoid函数的 \textstyle [0,1] 。


注意,与其它地方(包括OpenClassroom公开课以及斯坦福大学CS229课程)不同的是,这里我们不再令 \textstyle x_0=1 。取而代之,我们用单独的参数 \textstyle b 来表示截距。


最后要说明的是,有一个等式我们以后会经常用到:如果选择 \textstyle f(z) = 1/(1+\exp(-z)) ,也就是sigmoid函数,那么它的导数就是 \textstyle f'(z) = f(z) (1-f(z)) (如果选择tanh函数,那它的导数就是 \textstyle f'(z) = 1- (f(z))^2 ,你可以根据sigmoid(或tanh)函数的定义自行推导这个等式。


神经网络模型

所谓神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入。例如,下图就是一个简单的神经网络:

Network331.png

我们使用圆圈来表示神经网络的输入,标上“\textstyle +1”的圆圈被称为偏置节点,也就是截距项。神经网络最左边的一层叫做输入层,最右的一层叫做输出层(本例中,输出层只有一个节点)。中间所有节点组成的一层叫做隐藏层,因为我们不能在训练样本集中观测到它们的值。同时可以看到,以上神经网络的例子中有3个输入单元(偏置单元不计在内),3个隐藏单元及一个输出单元


我们用 \textstyle {n}_l 来表示网络的层数,本例中 \textstyle n_l=3 ,我们将第 \textstyle l 层记为 \textstyle L_l ,于是 \textstyle L_1 是输入层,输出层是 \textstyle L_{n_l} 。本例神经网络有参数 \textstyle (W,b) = (W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}) ,其中 \textstyle W^{(l)}_{ij} (下面的式子中用到)是第 \textstyle l 层第 \textstyle j 单元与第 \textstyle l+1 层第 \textstyle i 单元之间的联接参数(其实就是连接线上的权重,注意标号顺序), \textstyle b^{(l)}_i 是第 \textstyle l+1 层第 \textstyle i 单元的偏置项。因此在本例中, \textstyle W^{(1)} \in \Re^{3\times 3} , \textstyle W^{(2)} \in \Re^{1\times 3} 。注意,没有其他单元连向偏置单元(即偏置单元没有输入),因为它们总是输出 \textstyle +1。同时,我们用 \textstyle s_l 表示第 \textstyle l 层的节点数(偏置单元不计在内)。


我们用 \textstyle a^{(l)}_i 表示第 \textstyle l 层第 \textstyle i 单元的激活值(输出值)。当 \textstyle l=1 时, \textstyle a^{(1)}_i = x_i ,也就是第 \textstyle i 个输入值(输入值的第 \textstyle i 个特征)。对于给定参数集合 \textstyle W,b,我们的神经网络就可以按照函数 \textstyle h_{W,b}(x) 来计算输出结果。本例神经网络的计算步骤如下:


\begin{align}a_1^{(2)} &= f(W_{11}^{(1)}x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)})  \\a_2^{(2)} &= f(W_{21}^{(1)}x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)})  \\a_3^{(2)} &= f(W_{31}^{(1)}x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)})  \\h_{W,b}(x) &= a_1^{(3)} =  f(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)}) \end{align}


我们用 \textstyle z^{(l)}_i 表示第 \textstyle l 层第 \textstyle i 单元输入加权和(包括偏置单元),比如, \textstyle  z_i^{(2)} = \sum_{j=1}^n W^{(1)}_{ij} x_j + b^{(1)}_i ,则 \textstyle a^{(l)}_i = f(z^{(l)}_i) 。


这样我们就可以得到一种更简洁的表示法。这里我们将激活函数 \textstyle f(\cdot) 扩展为用向量(分量的形式)来表示,即 \textstyle f([z_1, z_2, z_3]) = [f(z_1), f(z_2), f(z_3)],那么,上面的等式可以更简洁地表示为:


\begin{align}z^{(2)} &= W^{(1)} x + b^{(1)} \\a^{(2)} &= f(z^{(2)}) \\z^{(3)} &= W^{(2)} a^{(2)} + b^{(2)} \\h_{W,b}(x) &= a^{(3)} = f(z^{(3)})\end{align}


我们将上面的计算步骤叫作前向传播。回想一下,之前我们用 \textstyle a^{(1)} = x 表示输入层的激活值,那么给定第 \textstyle l 层的激活值 \textstyle a^{(l)} 后,第 \textstyle l+1 层的激活值 \textstyle a^{(l+1)} 就可以按照下面步骤计算得到:


\begin{align}z^{(l+1)} &= W^{(l)} a^{(l)} + b^{(l)}   \\a^{(l+1)} &= f(z^{(l+1)})\end{align}


将参数矩阵化,使用矩阵-向量运算方式,我们就可以利用线性代数的优势对神经网络进行快速求解。


目前为止,我们讨论了一种神经网络,我们也可以构建另一种结构的神经网络(这里结构指的是神经元之间的联接模式),也就是包含多个隐藏层的神经网络。最常见的一个例子是 \textstyle  n_l 层的神经网络,第 \textstyle  1 层是输入层,第 \textstyle  n_l 层是输出层,中间的每个层 \textstyle  l 与层 \textstyle  l+1 紧密相联。这种模式下,要计算神经网络的输出结果,我们可以按照之前描述的等式,按部就班,进行前向传播,逐一计算第 \textstyle  L_2 层的所有激活值,然后是第 \textstyle  L_3 层的激活值,以此类推,直到第 \textstyle  L_{n_l} 层。这是一个前馈神经网络的例子,因为这种联接图没有闭环或回路。


神经网络也可以有多个输出单元。比如,下面的神经网络有两层隐藏层: \textstyle L_2 及 \textstyle L_3 ,输出层 \textstyle L_4 有两个输出单元。


Network3322.png


要求解这样的神经网络,需要样本集 \textstyle (x^{(i)}, y^{(i)}) ,其中 \textstyle y^{(i)} \in \Re^2 。如果你想预测的输出是多个的,那这种神经网络很适用。(比如,在医疗诊断应用中,患者的体征指标就可以作为向量的输入值,而不同的输出值 \textstyle y_i 可以表示不同的疾病存在与否。)

反向传导算法

假设我们有一个固定样本集 \textstyle \{ (x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}) \},它包含 \textstyle m 个样例。我们可以用批量梯度下降法来求解神经网络。具体来讲,对于单个样例 \textstyle (x,y),其代价函数为:

\begin{align}J(W,b; x,y) = \frac{1}{2} \left\| h_{W,b}(x) - y \right\|^2.\end{align}

这是一个(二分之一的)方差代价函数。给定一个包含 \textstyle m 个样例的数据集,我们可以定义整体代价函数为:

\begin{align}J(W,b)&= \left[ \frac{1}{m} \sum_{i=1}^m J(W,b;x^{(i)},y^{(i)}) \right]                       + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \; \sum_{i=1}^{s_l} \; \sum_{j=1}^{s_{l+1}} \left( W^{(l)}_{ji} \right)^2 \\&= \left[ \frac{1}{m} \sum_{i=1}^m \left( \frac{1}{2} \left\| h_{W,b}(x^{(i)}) - y^{(i)} \right\|^2 \right) \right]                       + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \; \sum_{i=1}^{s_l} \; \sum_{j=1}^{s_{l+1}} \left( W^{(l)}_{ji} \right)^2\end{align}

以上关于\textstyle J(W,b)定义中的第一项是一个均方差项。第二项是一个规则化项(也叫权重衰减项),其目的是减小权重的幅度,防止过度拟合。


[注:通常权重衰减的计算并不使用偏置项 \textstyle b^{(l)}_i,比如我们在 \textstyle J(W, b) 的定义中就没有使用。一般来说,将偏置项包含在权重衰减项中只会对最终的神经网络产生很小的影响。如果你在斯坦福选修过CS229(机器学习)课程,或者在YouTube上看过课程视频,你会发现这个权重衰减实际上是课上提到的贝叶斯规则化方法的变种。在贝叶斯规则化方法中,我们将高斯先验概率引入到参数中计算MAP(极大后验)估计(而不是极大似然估计)。]


权重衰减参数 \textstyle \lambda 用于控制公式中两项的相对重要性。在此重申一下这两个复杂函数的含义:\textstyle J(W,b;x,y) 是针对单个样例计算得到的方差代价函数;\textstyle J(W,b) 是整体样本代价函数,它包含权重衰减项。


以上的代价函数经常被用于分类和回归问题。在分类问题中,我们用 \textstyle y = 0 或 \textstyle 1,来代表两种类型的标签(回想一下,这是因为 sigmoid激活函数的值域为 \textstyle [0,1];如果我们使用双曲正切型激活函数,那么应该选用 \textstyle -1 和 \textstyle +1 作为标签)。对于回归问题,我们首先要变换输出值域(译者注:也就是 \textstyle y),以保证其范围为 \textstyle [0,1] (同样地,如果我们使用双曲正切型激活函数,要使输出值域为 \textstyle [-1,1])。


我们的目标是针对参数 \textstyle W 和 \textstyle b 来求其函数 \textstyle J(W,b) 的最小值。为了求解神经网络,我们需要将每一个参数 \textstyle W^{(l)}_{ij} 和 \textstyle b^{(l)}_i 初始化为一个很小的、接近零的随机值(比如说,使用正态分布 \textstyle {Normal}(0,\epsilon^2) 生成的随机值,其中 \textstyle \epsilon 设置为 \textstyle 0.01 ),之后对目标函数使用诸如批量梯度下降法的最优化算法。因为 \textstyle J(W, b) 是一个非凸函数,梯度下降法很可能会收敛到局部最优解;但是在实际应用中,梯度下降法通常能得到令人满意的结果。最后,需要再次强调的是,要将参数进行随机初始化,而不是全部置为 \textstyle 0。如果所有参数都用相同的值作为初始值,那么所有隐藏层单元最终会得到与输入值有关的、相同的函数(也就是说,对于所有 \textstyle i\textstyle W^{(1)}_{ij}都会取相同的值,那么对于任何输入 \textstyle x 都会有:\textstyle a^{(2)}_1 = a^{(2)}_2 = a^{(2)}_3 = \ldots )。随机初始化的目的是使对称失效


梯度下降法中每一次迭代都按照如下公式对参数 \textstyle W 和\textstyle b 进行更新:

\begin{align}W_{ij}^{(l)} &= W_{ij}^{(l)} - \alpha \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b) \\b_{i}^{(l)} &= b_{i}^{(l)} - \alpha \frac{\partial}{\partial b_{i}^{(l)}} J(W,b)\end{align}

其中 \textstyle \alpha 是学习速率。其中关键步骤是计算偏导数。我们现在来讲一下反向传播算法,它是计算偏导数的一种有效方法。


我们首先来讲一下如何使用反向传播算法来计算 \textstyle \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b; x, y) 和 \textstyle \frac{\partial}{\partial b_{i}^{(l)}} J(W,b; x, y),这两项是单个样例 \textstyle (x,y) 的代价函数 \textstyle J(W,b;x,y) 的偏导数。一旦我们求出该偏导数,就可以推导出整体代价函数 \textstyle J(W,b) 的偏导数:


\begin{align}\frac{\partial}{\partial W_{ij}^{(l)}} J(W,b) &=\left[ \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial W_{ij}^{(l)}} J(W,b; x^{(i)}, y^{(i)}) \right] + \lambda W_{ij}^{(l)} \\\frac{\partial}{\partial b_{i}^{(l)}} J(W,b) &=\frac{1}{m}\sum_{i=1}^m \frac{\partial}{\partial b_{i}^{(l)}} J(W,b; x^{(i)}, y^{(i)})\end{align}

以上两行公式稍有不同,第一行比第二行多出一项,是因为权重衰减是作用于 \textstyle W 而不是 \textstyle b


反向传播算法的思路如下:给定一个样例 \textstyle (x,y),我们首先进行“前向传导”运算,计算出网络中所有的激活值,包括 \textstyle h_{W,b}(x) 的输出值。之后,针对第 \textstyle l 层的每一个节点 \textstyle i,我们计算出其“残差” \textstyle \delta^{(l)}_i,该残差表明了该节点对最终输出值的残差产生了多少影响。对于最终的输出节点,我们可以直接算出网络产生的激活值与实际值之间的差距,我们将这个差距定义为 \textstyle \delta^{(n_l)}_i (第 \textstyle n_l 层表示输出层)。对于隐藏单元我们如何处理呢?我们将基于节点(译者注:第 \textstyle l+1 层节点)残差的加权平均值计算 \textstyle \delta^{(l)}_i,这些节点以 \textstyle a^{(l)}_i 作为输入。下面将给出反向传导算法的细节:


  1. 进行前馈传导计算,利用前向传导公式,得到 \textstyle L_2, L_3, \ldots 直到输出层 \textstyle L_{n_l} 的激活值。
  2. 对于第 \textstyle n_l 层(输出层)的每个输出单元 \textstyle i,我们根据以下公式计算残差:
    \begin{align}\delta^{(n_l)}_i= \frac{\partial}{\partial z^{(n_l)}_i} \;\;        \frac{1}{2} \left\|y - h_{W,b}(x)\right\|^2 = - (y_i - a^{(n_l)}_i) \cdot f'(z^{(n_l)}_i)\end{align}
    [译者注:
    \begin{align}\delta^{(n_l)}_i &= \frac{\partial}{\partial z^{n_l}_i}J(W,b;x,y) = \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \left\|y - h_{W,b}(x)\right\|^2 \\ &= \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \sum_{j=1}^{S_{n_l}} (y_j-a_j^{(n_l)})^2 = \frac{\partial}{\partial z^{n_l}_i}\frac{1}{2} \sum_{j=1}^{S_{n_l}} (y_j-f(z_j^{(n_l)}))^2 \\ &= - (y_i - f(z_i^{(n_l)})) \cdot f'(z^{(n_l)}_i) = - (y_i - a^{(n_l)}_i) \cdot f'(z^{(n_l)}_i)\end{align}
    ]
  3. 对 \textstyle l = n_l-1, n_l-2, n_l-3, \ldots, 2 的各个层,第 \textstyle l 层的第 \textstyle i 个节点的残差计算方法如下:
    \delta^{(l)}_i = \left( \sum_{j=1}^{s_{l+1}} W^{(l)}_{ji} \delta^{(l+1)}_j \right) f'(z^{(l)}_i)
    {译者注:
    \begin{align}\delta^{(n_l-1)}_i &=\frac{\partial}{\partial z^{n_l-1}_i}J(W,b;x,y) = \frac{\partial}{\partial z^{n_l-1}_i}\frac{1}{2} \left\|y - h_{W,b}(x)\right\|^2  = \frac{\partial}{\partial z^{n_l-1}_i}\frac{1}{2} \sum_{j=1}^{S_{n_l}}(y_j-a_j^{(n_l)})^2 \\&= \frac{1}{2} \sum_{j=1}^{S_{n_l}}\frac{\partial}{\partial z^{n_l-1}_i}(y_j-a_j^{(n_l)})^2 = \frac{1}{2} \sum_{j=1}^{S_{n_l}}\frac{\partial}{\partial z^{n_l-1}_i}(y_j-f(z_j^{(n_l)}))^2 \\&= \sum_{j=1}^{S_{n_l}}-(y_j-f(z_j^{(n_l)})) \cdot \frac{\partial}{\partial z_i^{(n_l-1)}}f(z_j^{(n_l)}) = \sum_{j=1}^{S_{n_l}}-(y_j-f(z_j^{(n_l)})) \cdot  f'(z_j^{(n_l)}) \cdot \frac{\partial z_j^{(n_l)}}{\partial z_i^{(n_l-1)}} \\&= \sum_{j=1}^{S_{n_l}} \delta_j^{(n_l)} \cdot \frac{\partial z_j^{(n_l)}}{\partial z_i^{n_l-1}} = \sum_{j=1}^{S_{n_l}} \left(\delta_j^{(n_l)} \cdot \frac{\partial}{\partial z_i^{n_l-1}}\sum_{k=1}^{S_{n_l-1}}f(z_k^{n_l-1}) \cdot W_{jk}^{n_l-1}\right) \\&= \sum_{j=1}^{S_{n_l}} \delta_j^{(n_l)} \cdot  W_{ji}^{n_l-1} \cdot f'(z_i^{n_l-1}) = \left(\sum_{j=1}^{S_{n_l}}W_{ji}^{n_l-1}\delta_j^{(n_l)}\right)f'(z_i^{n_l-1})\end{align}
    将上式中的\textstyle n_l-1\textstyle n_l的关系替换为\textstyle l\textstyle l+1的关系,就可以得到:
    \delta^{(l)}_i = \left( \sum_{j=1}^{s_{l+1}} W^{(l)}_{ji} \delta^{(l+1)}_j \right) f'(z^{(l)}_i)
    以上逐次从后向前求导的过程即为“反向传导”的本意所在。 
  4. 计算我们需要的偏导数,计算方法如下 :
    \begin{align}\frac{\partial}{\partial W_{ij}^{(l)}} J(W,b; x, y) &= a^{(l)}_j \delta_i^{(l+1)} \\\frac{\partial}{\partial b_{i}^{(l)}} J(W,b; x, y) &= \delta_i^{(l+1)}.\end{align}

最后,我们用矩阵-向量表示法重写以上算法。我们使用“\textstyle \bullet” 表示向量乘积运算符(在Matlab或Octave里用“.*”表示,也称作阿达马乘积)。若 \textstyle a = b \bullet c,则 \textstyle a_i = b_ic_i。在上一个教程中我们扩展了 \textstyle f(\cdot) 的定义,使其包含向量运算,这里我们也对偏导数 \textstyle f'(\cdot) 也做了同样的处理(于是又有 \textstyle f'([z_1, z_2, z_3]) = [f'(z_1), f'(z_2), f'(z_3)] )。


那么,反向传播算法可表示为以下几个步骤:

  1. 进行前馈传导计算,利用前向传导公式,得到 \textstyle L_2, L_3, \ldots直到输出层 \textstyle L_{n_l} 的激活值。
  2. 对输出层(第 \textstyle n_l 层),计算:
    \begin{align}\delta^{(n_l)}= - (y - a^{(n_l)}) \bullet f'(z^{(n_l)})\end{align}
  3. 对于 \textstyle l = n_l-1, n_l-2, n_l-3, \ldots, 2 的各层,计算:
    \begin{align}\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)}\right) \bullet f'(z^{(l)})\end{align}
  4. 计算最终需要的偏导数值:
    \begin{align}\nabla_{W^{(l)}} J(W,b;x,y) &= \delta^{(l+1)} (a^{(l)})^T, \\\nabla_{b^{(l)}} J(W,b;x,y) &= \delta^{(l+1)}.\end{align}


实现中应注意:在以上的第2步和第3步中,我们需要为每一个 \textstyle i 值计算其 \textstyle f'(z^{(l)}_i)。假设 \textstyle f(z) 是sigmoid函数,并且我们已经在前向传导运算中得到了 \textstyle a^{(l)}_i。那么,使用我们早先推导出的 \textstyle f'(z)表达式,就可以计算得到 \textstyle f'(z^{(l)}_i) = a^{(l)}_i (1- a^{(l)}_i)


最后,我们将对梯度下降算法做个全面总结。在下面的伪代码中,\textstyle \Delta W^{(l)} 是一个与矩阵 \textstyle W^{(l)} 维度相同的矩阵,\textstyle \Delta b^{(l)} 是一个与 \textstyle b^{(l)} 维度相同的向量。注意这里“\textstyle \Delta W^{(l)}”是一个矩阵,而不是“\textstyle \Delta 与 \textstyle W^{(l)} 相乘”。下面,我们实现批量梯度下降法中的一次迭代:


  1. 对于所有 \textstyle l,令 \textstyle \Delta W^{(l)} := 0 , \textstyle \Delta b^{(l)} := 0 (设置为全零矩阵或全零向量)
  2. 对于 \textstyle i = 1 到 \textstyle m
    1. 使用反向传播算法计算 \textstyle \nabla_{W^{(l)}} J(W,b;x,y) 和 \textstyle \nabla_{b^{(l)}} J(W,b;x,y)
    2. 计算 \textstyle \Delta W^{(l)} := \Delta W^{(l)} + \nabla_{W^{(l)}} J(W,b;x,y)
    3. 计算 \textstyle \Delta b^{(l)} := \Delta b^{(l)} + \nabla_{b^{(l)}} J(W,b;x,y)
  3. 更新权重参数:
    \begin{align}W^{(l)} &= W^{(l)} - \alpha \left[ \left(\frac{1}{m} \Delta W^{(l)} \right) + \lambda W^{(l)}\right] \\b^{(l)} &= b^{(l)} - \alpha \left[\frac{1}{m} \Delta b^{(l)}\right]\end{align}

现在,我们可以重复梯度下降法的迭代步骤来减小代价函数 \textstyle J(W,b) 的值,进而求解我们的神经网络。


版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_29762941/article/details/80343185

智能推荐

程序员如何优化自己的职业程序?_程序员怎么走系统优化路线-程序员宅基地

文章浏览阅读700次。突如其来的疫情,打乱了所有职场人的节奏。年前裸辞,打算年后再找工作,拿到offer的希望,瞬间渺茫;领了年终奖,准备迎接“跳槽季”,迎来的是裁员、企业倒闭。困守在家中的人,也在线上交流着对未来的担忧:“疫情什么时候结束?我该怎么安排跳槽节奏?”“公司会不会裁员?我该怎么让自己不可替代?”“疫情对行业有什么影响?我要不要朝线上发展?”这些..._程序员怎么走系统优化路线

GCN公式中特征矩阵和邻接矩阵的处理_(1)获取点簇特征矩阵x,并计算邻接矩阵a,自连接邻接矩阵 , 及 ; (2)输入两层的gcn-程序员宅基地

文章浏览阅读1.2w次,点赞7次,收藏45次。https://mp.weixin.qq.com/s?__biz=MzI0ODcxODk5OA==&mid=2247509797&idx=4&sn=0f356b8f6397ad6e0743e192ed182ede&chksm=e99e94dcdee91dcad9bc842ed129b27e7cfe649fc3407e21e7e0c05060c7f6daf346d628f189&mpshare=1&scene=23&srcid=0617GtNIERqCM_(1)获取点簇特征矩阵x,并计算邻接矩阵a,自连接邻接矩阵 , 及 ; (2)输入两层的gcn

上传文件前先预览图片的实现方法_php 上传前 预览图片-程序员宅基地

文章浏览阅读625次。https://blog.csdn.net/fireofjava/article/details/46011381_php 上传前 预览图片

java操作redis简单示例_java redis hashmap-程序员宅基地

文章浏览阅读4k次。java操作redis简单示例_java redis hashmap

python 输出颜色与样式的方法_python windll getstdhandle-程序员宅基地

文章浏览阅读2.9k次。上次遇到这个问题就想写下来,其实当时我也不怎么会,老师说这个东西不需要理解,只需要死记硬背,写的多了就记住了,所以今天搜集了几篇文章,加上自己的理解,写下了这篇python 输出颜色的样式与方法的文章,一方面想自己记录下自己的理解,另一方面想用自己通俗的理解送给需要的盆友。在写python 程序代码的时候,我们知道python 输出的字符串颜色和一般字符相同,但是许多时候,我们需要强调某些字符..._python windll getstdhandle

中国移动一键登录 —— Flutter(安卓)_flutter一键登录-程序员宅基地

文章浏览阅读3.7k次,点赞4次,收藏15次。随着Flutter逐渐的被越来越多的公司所采用,那么如何将中国移动统一认证SDK接入到Flutter应用中。目录1.准备工作2.开始接入3.运行调试4.注意事项1.准备工作1.1 下载好统一认证SDK,这里使用的版本是quick_login_android_5.8.11.2 在移动开发平台申请好应用拿到appid、appkey2.开始接入2.1 按照统一认证SDK接入文档配置好权限,READ_PHONE_STATE权限根据应用方需要选择是否添加,SDK不强制要求._flutter一键登录

随便推点

python字符串案例_python中str1 = 'abcdefg' str2 = 'abcdefg' print(id(-程序员宅基地

文章浏览阅读870次。str1 = 'abcdefg higklmn'print(str1)print(id(str1))print(type(str1))print(dir(str1))print(str1[1:2])# 修改字符串,拼接字符串print(str1 + ' HELLO WORD')# 格式化字符串print('姓名 %s 年龄 %d' % ('小白',10))..._python中str1 = 'abcdefg' str2 = 'abcdefg' print(id(str1)) print(id(str2))

飞思卡尔S12系列(基于MC9S12XET256MAA和/MC9S12XEP100)中断PIT资料总结和分享_pitmtld0=100-1;设置定时器0的计数值,这里设置为99,用于生成一个定时周期。pitld-程序员宅基地

文章浏览阅读2.9k次。核心内容就在这张图上:   相信大家都明白总线的概念,在图中可以看到6个定时器模块,Micro Timer 0、Micro Timer 1、Timer 0、Timer 1、Timer 2、Timer 3,其中前两个是8位的,后四个是16位的。从图中可以看出PIT模块是以总线时钟(Bus Clock)为基准时钟的,总线时钟通过8位Micro Timer 0和Micro Timer 1倍频..._pitmtld0=100-1;设置定时器0的计数值,这里设置为99,用于生成一个定时周期。pitld0=10000-1;设置定时器0的加载值,这里设置为9999,表示定时器0的溢出时间为10000个时钟周期。

ModBus-RTU通讯协议编程_modbusrtu设备编程-程序员宅基地

文章浏览阅读7.5k次,点赞9次,收藏78次。编者说:ModBus通信协议结构简单,编程方便,在工业应用现场被广泛使用,特别是PLC应用场合。需要指出的是,ModBus只是一种通信协议,即设备之间的数据约束方式,使用时需要有底层的驱动程序支持,例如,串口通讯。串口通信使用简单,在ModBus协议中应用广泛。在信号的传输方式上又分为RS-232通信,RS-485通信,这种区分只是在数据的传输方式方作划分,底层的驱动程序完全一样。需要长距离、..._modbusrtu设备编程

DayDayUP_linuxC学习日记 _利用C实现文件的复制_该程序通过从待复制的文件中逐步读出数据到缓冲区,再把缓冲区的数据逐个写入-程序员宅基地

文章浏览阅读607次。read/write 的使用 读函数read ssize_t read(int fd,void *buf,size_t nbyte)read函数是负责从fd中读取内容.成功时,read返回实际所读的字节数,如果返回的值是0,表示已经读到文件的结束了. 小于0表示出现了错误.如果错误为EINTR说明读是由中断引起的, 如果是ECONNREST表示网络连接出了问题. 写函数write ssi_该程序通过从待复制的文件中逐步读出数据到缓冲区,再把缓冲区的数据逐个写入

maven项目简介-程序员宅基地

文章浏览阅读1.1k次。前言: 最近在公司接触的项目都是"maven项目",可是除了安装了一个maven的插件和项目中多了一个maven的配置文件外,对于maven的事情就看不到了,于是今天查了一些关于maven的相关介绍,跟大家一个分享下,看看maven到底是个什么东东... 正题:1.Maven能做什么? Maven是一个强大的构建工具,可以帮我们自动化构建过程,从清理、编译、测试_maven项目

Windows高级调试 调试工具简介_windbg logviewer.exe-程序员宅基地

文章浏览阅读2.6k次。第一部分 概 述第1章 调试工具简介许多技术性的书籍和文章都指出了在正确的软件设计和软件工程原则中包含的重要性。有些书侧重于介绍在方法与实践之间的均衡性,而有些书则注重对方法的描述。一些书讨论了面向对象设计、设计模式以及模块化编程等方法,这些方法都能帮助我们编写出更强大的软件。毫无疑问,正确的软件开发方法是所有软件项目获得成功的必要条件。然而,它们却并不是软件项目_windbg logviewer.exe