深度学习 第1讲:深度学习简介和感知机原理与实现_python 单层感知机 深度学习-程序员宅基地

技术标签: 机器学习  深度学习  人工智能  

而对于阅读深度学习系列文章的广大数据爱好者而言,小编希望大家能有一些机器学习基础,而且小编不会去刻意用很多通俗的语言去描述数学和计算机科学相关的术语和概念,当然小编也会尽力把主要的知识点说的够敞亮,希望大家理解。那么闲话少说,我们正式开启深度学习的学习之旅~

1

机器学习与深度学习

要是说到深度学习,恐怕不得不先提一下机器学习,解释好二者之间的关系。相信大家心中应该有自己对于机器学习概念的理解。小编这里就一句话简单概括一下:机器学习就是从历史数据中探索和训练出数据的普遍规律,将其归纳为相应的数学模型,并对未知的数据进行预测的过程。至于在这个过程中我们碰到的各种各样的问题,比如数据质量、模型评价标准、训练优化方法、过拟合等一系列关乎机器学习模型生死的问题,小编就不展开来说了,自己去补机器学习知识哈。

在机器学习中,我们有很多很多已经相当成熟了的模型和算法。(这里厘一下模型和算法的概念,小编认为,通常我们所说的像SVM之类的所谓机器学习十大算法其实不应该称之为算法,更应该称其为模型,机器学习的算法应该是在给定模型和训练策略的情况下采取的优化算法,比如梯度下降、牛顿法之类。当然,一般情况下将模型和算法混合称呼也不碍事,毕竟模型中本身就包含着计算规则的意思。)在这很多种机器学习模型中,有一种很厉害的模型,那就是人工神经网络。这种模型从早期的感知机发展而来,对任何函数都有较好的拟合性,但自上个世纪90年代一直到2012年深度学习集中爆发前夕,神经网络受制于计算资源的限制和较差的可解释性,一直处于发展的低谷阶段。之后大数据兴起,计算资源也迅速跟上,加之2012年ImageNet竞赛冠军采用的AlexNet卷积神经网络一举将图片预测的 top5 错误率降至16.4%,震惊了当时的学界和业界。从此之后,原本处于研究边缘状态的神经网络又迅速热了起来,深度学习也逐渐占据了计算机视觉的主导地位。

扯了这么多,无非就是想让大家知道,以神经网络为核心的深度学习理论是机器学习的一个领域分支,所以深度学习其本质上也必须是遵循一些机器学习的基本要义和法则的。传统的机器学习中,我们需要训练的是结构化的数值数据,比如说预测销售量、预测某人是否按时还款等等。但在深度学习中,我们的训练输入就不大是常规的数据了,它可能是一张图像、一段语言、一段对话语料或是一段视频。深度学习要做的就是我丢一张猫的图片到神经网络里,它的输出是猫或者cat这样的标签,丢进去一段语音,它输出的是你好这样的文本。所以机器学习/深度学习的核心任务就是找(训练)一个模型,它能够将我们的输入转化为正确的输出。

(图片来自台湾大学李宏毅教授的deep learning tutorial ppt)

2

感知机与神经网络

就像上面那幅图展示的一样,深度学习看起来就像是一个黑箱子,给定输入之后就出来预测结果,中间的细节很难搞清楚。在实际生产环境下,调用像 tensorflow 这样优秀的深度学习计算框架能够帮助我们快速搭建起一个深度学习项目,但在学习深度学习的过程中,小编并不建议大家一开始就上手各种深度学习框架,希望大家能和小编一道,在把基本的原理搞明白之后利用 python 或者 R 自己手动去编写模型和实现算法细节。

所以,为了学习各种结构的神经网络,我们需要从头开始。感知机作为神经网络和支持向量机的理论基础,相信任何有机器学习基础的同学都清楚其模型细节。简单而言,感知机就是一个旨在建立一个线性超平面对线性可分的数据集进行分类的线性模型。其基本结构如下所示:

上图从左到右为感知机模型的计算执行方向,模型接受了X1、X2、X3三个输入,将输入与权值参数W进行加权求和并经过 sigmoid 函数进行激活,将激活结果作为 y 进行输出。这便是感知机执行前向计算的基本过程。这样就行了吗?当然不行。按照李航老师的统计学习三要素来打分,刚刚我们只解释了模型,对策略和算法并未解释。当我们执行完前向计算得到输出之后,模型需要根据你的输出和实际的输出按照损失函数计算当前损失,计算损失函数关于权值和偏置的梯度,然后根据梯度下降法更新权值和偏置。经过不断的迭代调整权值和偏置使得损失最小,这便是完整的单层感知机的训练过程。

输入为图像的感知机计算过程(图片来自吴恩达老师deeplearningai作业截图)

上述的单层感知机包含两层神经元,即输入与输出神经元,可以非常容易的实现逻辑与、或和非等线性可分情形,但终归而言,这样的一层感知机的学习能力是非常有限的,对于像异或这样的非线性情形,单层感知机就搞不定了。其学习过程会呈现一定程度的振荡,权值参数 w 难以稳定下来,最终不能求得合适的解。

单层感知机难以解决异或问题(截图于周志华老师的《机器学习》)

对于非线性可分的情况,在感知机基础上一般有了两个解决方向,一个就是著名的支持向量机模型,旨在通过核函数映射来处理非线性的情况,这里我们不多谈,读者朋友们可以去回顾复习机器学习中有关的内容,而另一种就是神经网络模型。这里的神经网络模型也叫多层感知机(MLP: Muti-Layer Perception),与单层的感知机在结构上的区别主要在于 MLP 多了若干隐藏层,这使得神经网络对非线性的情况拟合能力大大增强。

一个单隐层的人工神经网络的结构如下图所示:

可以看到相较于两层神经元的单层感知机,多层感知机中间多了一个隐藏层,称为隐藏层的含义在于神经网络的训练过程中我们只能观察到输入和输出层的数据,对于中间的隐藏层我们是看不见的,因而在深度神经网络(DNN)中,对于中间看不见又难以进行解释的隐藏层又有个黑箱子的称呼。

含隐藏层的神经网络是如何训练的呢?跟感知机一样,神经网络的训练依然是包含前向计算和反向传播两个主要过程。当然,单层感知机没有反向传播的概念,通常是直接建立损失函数对权值和偏置参数的梯度优化。前向计算过程这里不再细述,就是权值偏置与输入的线性加权和激活操作,在隐藏层上有个嵌套的过程。这里我们重点讲一下反向传播算法(Error BackPropagation,因而也叫误差逆传播),作为神经网络的训练算法,反向传播算法可谓是目前最成功的神经网络学习算法了。我们通常说的 BP 神经网络也就是指应用反向传播算法进行训练的神经网络模型。

那反向传播算法究竟是怎样个工作机制呢?前方高能,需要大家自己补习微积分知识。因为小编实在是没有不借助公式把反向传播讲清楚的能力。假设以一个两层(即单隐层)网络为例,也就是上图中的网络结构,小编带大家详细推导一下反向传播的基本过程。

我们假设输入层为 X ,输入层与隐藏层之间的权值和偏置分别为 W1 和 b1,线性加权计算结果为 Z1 = W1*X + b1,采用 sigmoid 激活函数,隐藏层是激活输出为 a1 = σ(Z1)。而隐藏层到输出层的权值和偏置分别为 W2 和 b2,线性加权计算结果为 Z2 = W2*a1+ b2,激活输出为 a2 = σ(Z2)。所以这个两层网络的前向计算过程为 X-Z1-a1-Z2-a2。

所以反向传播的直观理解就是将上述前向计算过程反过来,但必须是梯度计算的方向反过来,假设我们这里采用交叉熵损失函数:

反向传播是基于梯度下降策略的,主要是以目标参数的负梯度方向对参数进行更新,所以基于损失函数对前向计算过程中各个变量进行梯度计算就是非常必要的了。将前向计算过程反过来,那基于损失函数的梯度计算顺序就是 da2-dZ2-dW2-db2-da1-dZ1-dW1-db1。一大堆微分符号!聪明如你应该可以看到我们马上要进行一波链式求导操作。我们从输出 a2 开始进行反向推导。输出层激活输出为 a2,那首先计算损失函数L(y, a) 关于 a2 的微分 da2,影响输出 a2 的是谁呢?由前向传播可知 a2 是由 Z2 经激活函数激活计算而来的,所以计算损失函数关于 Z2 的导数 dZ2 必须经由 a2 进行复合函数求导,即微积分上常说的链式求导法则。然后继续往前推,影响 Z2 的又是哪些变量呢?由前向计算 Z2 = W2*a1+ b2 可知影响 Z2 的有 W2、a1 和 b2,继续按照链式求导法则进行求导即可。最终以交叉熵损失函数为代表的两层神经网络的反向传播向量化求导计算公式如下所示:

在有了梯度计算结果之后,我们便可根据权值更新公式对权值和偏置参数进行更新了,具体计算公式如下,其中 η 为学习率,是个超参数,需要我们在训练时手动指定,当然也可以对其进行调参取得最优超参数。

以上便是 BP 神经网络模型和算法的基本工作流程,简单而言就是前向计算得到输出,反向传播调整参数,最后以得到损失最小时的参数为最优学习参数。神经网络的基本总结流程如下图所示:

训练一个 BP 神经网络并非难事,我们有足够优秀的深度学习计算框架通过几行代码就可以搭建起一个全连接网络。但是为了学习和掌握神经网络的基本思维范式和锻炼实际的编码能力,希望大家能够利用 python 或者 R 在不调用任何算法包的情况下根据算法原理手动实现一遍神经网络模型。最后以一个神经网络可视化的动图给大家动态的展示一下神经网络的训练过程:

第一讲的内容到这里就结束了,在深度学习第一讲中,我们了解了深度学习和机器学习的基本关系和发展历程,对神经网络的理论基础有了更深层次的学习和掌握。咱们下期见!


每一个HTML文档中,都有一个不可或缺的标签:<head>,在几乎所有的HTML文档里, 我们都可以看到类似下面这段代码:

html{color:#000;overflow-y:scroll;overflow:-moz-scrollbars}
body,button,input,select,textarea{font-size:12px;font-family:Arial,sans-serif}
h1,h2,h3,h4,h5,h6{font-size:100%}
em{font-style:normal}
small{font-size:12px}
ol,ul{list-style:none}
a{text-decoration:none}
a:hover{text-decoration:underline}
legend{color:#000}
fieldset,img{border:0}
button,input,select,textarea{font-size:100%}
table{border-collapse:collapse;border-spacing:0}
img{-ms-interpolation-mode:bicubic}
textarea{resize:vertical}
.left{float:left}
.right{float:right}
.overflow{overflow:hidden}
.hide{display:none}
.block{display:block}
.inline{display:inline}
.error{color:red;font-size:12px}
button,label{cursor:pointer}
.clearfix:after{content:'\20';display:block;height:0;clear:both}
.clearfix{zoom:1}
.clear{clear:both;height:0;line-height:0;font-size:0;visibility:hidden;overflow:hidden}
.wordwrap{word-break:break-all;word-wrap:break-word}
.s-yahei{font-family:arial,'Microsoft Yahei','微软雅黑'}
pre.wordwrap{white-space:pre-wrap}
body{text-align:center;background:#fff;width:100%}
body,form{position:relative;z-index:0}
td{text-align:left}
img{border:0}
#s_wrap{position:relative;z-index:0;min-width:1000px}
#wrapper{height:100%}
#head .s-ps-islite{_padding-bottom:370px}
#head_wrapper.s-ps-islite{padding-bottom:370px}#head_wrapper.s-ps-islite #s_lm_wrap{bottom:298px;background:0 0!important;filter:none!important}#head_wrapper.s-ps-islite .s_form{position:relative;z-index:1}#head_wrapper.s-ps-islite .fm{position:absolute;bottom:0}#head_wrapper.s-ps-islite .s-p-top{position:absolute;bottom:40px;width:100%;height:181px}#head_wrapper.s-ps-islite #s_lg_img,#head_wrapper.s-ps-islite#s_lg_img_aging,#head_wrapper.s-ps-islite #s_lg_img_new{position:static;margin:33px auto 0 auto}.s_lm_hide{display:none!important}#head_wrapper.s-down #s_lm_wrap{display:none}.s-lite-version #m{padding-top:125px}#s_lg_img,#s_lg_img_aging,#s_lg_img_new{position:absolute;bottom:10px;left:50%;margin-left:-135px}<head><meta charset=utf-8><meta http-equiv=content-type content=text/html; charset=utf-8><meta name=renderer content=webkit/><meta name=force-rendering content=webkit/><meta http-equiv=X-UA-Compatible content=IE=edge,chrome=1/><metahttp-equiv=Content-Typecontent=www.czjy.cn;charset=gb2312><meta name=viewport content=width=device-width, initial-scale=1.0, minimum-scale=1.0, maximum-scale=1.0, user-scalable=no></head>.s-ps-sug table{width:100%;background:#fff;cursor:default}.s-ps-sug td{color:#000;font:14px arial;height:25px;line-height:25px;padding:0 8px}.s-ps-sug td b{color:#000}.s-ps-sug .mo{background:#ebebeb;cursor:pointer}.s-ps-sug .ml{background:#fff}.s-ps-sug td.sug_storage{color:#7a77c8}.s-ps-sug td.sug_storage b{color:#7a77c8}.s-ps-sug .sug_del{font-size:12px;color:#666;text-decoration:underline;float:right;cursor:pointer;display:none}.s-ps-sug .sug_del{font-size:12px;color:#666;text-decoration:underline;float:right;cursor:pointer;display:none}.s-ps-sug .mo .sug_del{display:block}
.s-ps-sug .sug_ala{border-bottom:1px solid #e6e6e6}

head标签作为一个容器,主要包含了用于描述 HTML 文档自身信息(元数据)的标签,这些标签一般不会在页面中被显示出来。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/RunMews/article/details/131153682

智能推荐

BAT批处理创建文件桌面快捷方式_批处理创建桌面快捷方式-程序员宅基地

文章浏览阅读1.5w次,点赞9次,收藏26次。简介一个创建某个文件到桌面快捷方式的BAT批处理.代码@echooff::设置程序或文件的完整路径(必选)setProgram=D:\Program Files (x86)\格式工厂.4.2.0\FormatFactory.exe::设置快捷方式名称(必选)setLnkName=格式工厂v4.2.0::设置程序的工作路径,一般为程序主目录,此项若留空,脚本将..._批处理创建桌面快捷方式

射频识别技术漫谈(6-10)_芯片 ttf模式-程序员宅基地

文章浏览阅读2k次。射频识别技术漫谈(6-10),概述RFID的通讯协议;射频ID卡的原理与实现,数据的传输与解码;介绍动物标签属性与数据传输;RFID识别号的变化等_芯片 ttf模式

Python 项目实战 —— 手把手教你使用 Django 框架实现支付宝付款_django 对接支付宝接口流程-程序员宅基地

文章浏览阅读1.1k次。今天小编心血来潮,为大家带来一个很有趣的项目,那就是使用 Python web 框架 Django 来实现支付宝支付,废话不多说,一起来看看如何实现吧。_django 对接支付宝接口流程

Zabbix 5.0 LTS在清理历史数据后最新数据不更新_zabbix问题没有更新-程序员宅基地

文章浏览阅读842次。Zabbix 5.0 LTS,跑了一年多了一直很稳定,前两天空间显示快满了,于是手贱清理了一下history_uint表(使用mysql truncate),结果折腾了一周。大概故障如下:然后zabbix论坛、各种群问了好久都没解决,最后自己一番折腾似乎搞定了。初步怀疑,应该是由于历史数据被清空后,zabbix需要去处理数据,但是数据量太大,跑不过来,所以来不及更新了(?)..._zabbix问题没有更新

python学习历程_基础知识(2day)-程序员宅基地

文章浏览阅读296次。一、数据结构之字典 key-value

mybatis-plus字段策略注解strategy_mybatisplus strategy-程序员宅基地

文章浏览阅读9.7k次,点赞3次,收藏13次。最近项目中遇到一个问题,是关于mybatis-plus的字段注解策略,记录一下。1问题调用了A组件(基础组件),来更新自身组件的数据,发现自己组件有个字段总是被清空。2原因分析调用的A组件的字段,属于基础字段,自己业务组件,对这个基础字段做了扩展,增加了业务字段。但是在自己的组件中的实体注解上,有一个注解使用错误。mybatis-plus封装的updateById方法,如果..._mybatisplus strategy

随便推点

信息检索笔记-索引构建_为某一文档及集构件词项索引时,可使用哪些索引构建方法-程序员宅基地

文章浏览阅读3.8k次。如何构建倒排索引,我们将这个过程叫做“索引构建”。如果我们的文档很多,这样索引就一次性装不下内存,该如何构建。硬件的限制 我们知道ram读写是随机的操作,只要输入相应的地址单元就能瞬间将数据读出来或者写进去。但是磁盘不行,磁盘必须有一个寻道的过程,外加一个旋转时间。那么只有涉及到磁盘,我们就可以考虑怎么节省I/O操作时间。【注】操作系统往往以数据块为单位进行读写。因为读一_为某一文档及集构件词项索引时,可使用哪些索引构建方法

IT巨头英特尔看好中国市场前景-程序员宅基地

文章浏览阅读836次。英特尔技术与制造事业部副总裁卞成刚7日在财富论坛间隙接受中新社记者采访时表示,该公司看好中国市场前景,扎根中国并以此走向世界是目前最重要的战略之一。卞成刚说,目前该公司正面临战略转型,即从传统PC服务领域扩展至所有智能设施领域,特别是移动终端。而中国目前正引领全球手机市场,预计未来手机、平板电脑等方面的发明创新将大量在中国市场涌现,并推向全球。持相同态度的还有英特尔中国区执行董事戈峻。戈峻

ceph中的radosgw相关总结_radosgw -c-程序员宅基地

文章浏览阅读627次。https://blog.csdn.net/zrs19800702/article/details/53101213http://blog.csdn.net/lzw06061139/article/details/51445311https://my.oschina.net/linuxhunter/blog/654080rgw 概述Ceph 通过radosgw提供RES..._radosgw -c

前端数据可视化ECharts使用指南——制作时间序列数据的可视化曲线_echarts 时间序列-程序员宅基地

文章浏览阅读3.7k次,点赞6次,收藏9次。我为什么选择ECharts ? 本周学校课程设计,原本随机佛系选了一个51单片机来做音乐播放器,结果在粗略玩了CN-DBpedia两天后才回过神,课设还没有开始整。于是懒癌发作,碍于身上还有比赛的作品没交,本菜鸡对硬件也没啥天赋,所以就直接把题目切换成软件方面的题目。写python的同学选择了一个时间序列数据的可视化曲线程序设计题目,果真python在数据可视化这一点性能很优秀。..._echarts 时间序列

ApplicationEventPublisherAware事件发布-程序员宅基地

文章浏览阅读1.6k次。事件类:/** * *   * @className: EarlyWarnPublishEvent *   * @description:数据风险预警发布事件 *   * @param: *   * @return: *   * @throws: *   * @author: lizz *   * @date: 2020/05/06 15:31 * */public cl..._applicationeventpublisheraware

自定义View实现仿朋友圈的图片查看器,缩放、双击、移动、回弹、下滑退出及动画等_imageview图片边界回弹-程序员宅基地

文章浏览阅读1.2k次。如需转载请注明出处!点击小图片转到图片查看的页面在Android开发中很常用到,抱着学习和分享的心态,在这里写下自己自定义的一个ImageView,可以实现类似微信朋友圈中查看图片的功能和效果。主要功能需求:1.缩放限制:自由缩放,有最大和最小的缩放限制 2居中显示:.若图片没充满整个ImageView,则缩放过程将图片居中 3.双击缩放:根据当前缩放的状态,双击放大两倍或缩小到原来 4.单指_imageview图片边界回弹