预测房价 | 实战(一)_mpl实现房价预测-程序员宅基地

技术标签: 机器学习实战  

1.设置

确保matplotlib工作和写函数来保存图片

保证python2和python3的可以使用
from __future__ import division, print_function, unicode_literals

import numpy as np
import os

# 确保notebook运行时结果稳定
np.random.seed(42)

# 修改默认属性
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)

# 设置储存图片路径
PROJECT_ROOT_DIR = "."
CHAPETER_ID = "end_to_end_project"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
	path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
	print("Saving figure", fig_id)
	if tight_layout:
	plt.tight_layout()
	plt.savefig(path, format=fig_extension, dpi=resolution)

# 忽略没用的警告
import warnings
warnings.filterwarnings(action="ignore", message="^internal gelsd")

2. 获取数据

import os
import tarfile
from six.moves import urllib

DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml/master/"
HOUSING_PATH = os.path.join("datasets", "housing")
HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz"

def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH)
	os.makedirs(housing_path, exist_ok=True) # 创建目录
	tgz_path = os.path.join(housing_path, "housing.tgz") 
	urllib.request.urlretrieve(housing_url, tgz_path) # 从远程获取文件放入指定文件
	housing_tgz = tarfile.open(tgz_path)
	housing_tgz.extractall(path=housing_path) # 解压文件到当前目录
	housing_tgz.close() 
fetch_housing_data()

import pandas as pd
def load_housing_data(housing_path=HOUSING_PATH):
	csv_path = os.path.join(housing_path, "housing.csv")
	return pd.read_csv(csv_path)

housing = load_housing_data()
housing.head()

在这里插入图片描述

housing.info()

在这里插入图片描述

housing["ocean_proximity"].value_counts()

在这里插入图片描述

housing.describe()

在这里插入图片描述

%matplotlib inline
import matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(20,15))
save_fig("attribute_histogram_plots")
plt.show()

在这里插入图片描述

# 使每次运行时输出的结果保持一致
np.random.seed(42)

import numpy as np
def split_train_test(data, test_ratio):
	shuffled_indices = np.random.permutation(len(data))
	test_set_size = int(len(data) * test_ratio)
	test_indices = shuffled_indices[:test_set_size]
	train_indices = shuffled_indices[test_set_size:]
	return data.iloc[train_indices], data.iloc[test_indices]

train_set, test_set = split_train_test(housing, 0.2)
print(len(train_set), "train +", len(test_set), "test")

在这里插入图片描述

from zlib import crc32
def test_set_check(identifier, test_ratio):
	return crc32(np.int64(identifier)) & 0xffffffff < test_ratio * 2**32

def split_train_test_by_id(data, test_ratio, id_column):
	ids = data[id_column]
	in_test_set = ids.apply(lambda id_: test_set_check(id_, test_ratio))
	return data.loc[~in_test_set], data.loc[in_test_set]
import hashlib
def test_set_check(identifier, test_ratio, hash=hashlib.md5):
	return hash(np.int64(identifier)).digest()[-1] < 256 * test_ratio

def test_set_check(identifier, test_ratio, hash=hashlib.md5):
	return bytearray(hash(np.int64(identifier)).digest())[-1] < 256 * test_ratio

housing_with_id = housing.reset_index()   # adds an `index` column
train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "index")

housing_with_id["id"] = housing["longitude"] * 1000 + housing["latitude"]
train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "id")

test_set.head()

在这里插入图片描述

from sklearn.model_selection import train_test_split

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

test_set.head()

在这里插入图片描述

housing["median_income"].hist()

在这里插入图片描述

# 将数据分成五个区间,并且标签
housing["income_cat"] = pd.cut(housing["median_income"],bins=[0., 1.5, 3.0, 4.5, 6., np.inf],labels=[1, 2, 3, 4, 5])

housing["income_cat"].value_counts()

在这里插入图片描述

using["income_cat"].hist()

在这里插入图片描述

# 交叉验证
from sklearn.model_selection import StratifiedShuffleSplit
for train_index, test_index in split.split(housing, housing["income_cat"]):
	strat_train_set = housing.loc[train_index]
	strat_test_set = housing.loc[test_index]

strat_test_set["income_cat"].value_counts() / len(strat_test_set)

在这里插入图片描述

housing["income_cat"].value_counts() / len(housing)

在这里插入图片描述

def income_cat_proportions(data):
	return data["income_cat"].value_counts() / len(data)

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

compare_props = pd.DataFrame({
    
	"Overall": income_cat_proportions(housing),
	"Stratified": income_cat_proportions(strat_test_set),
	"Random": income_cat_proportions(test_set),
}).sort_index()
compare_props["Rand. %error"] = 100 * compare_props["Random"] / compare_props["Overall"] - 100
compare_props["Strat. %error"] = 100 * compare_props["Stratified"] / compare_props["Overall"] - 100

compare_props

在这里插入图片描述

for set_ in (strat_train_set, strat_test_set):
	set_.drop("income_cat", axis=1, inplace=True)

3. 可视化数据,探索联系

housing = strat_train_set.copy()

housing.plot(kind="scatter", x="longitude", y="latitude")
save_fig("bad_visualization_plot")

在这里插入图片描述

housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1)
save_fig("better_visualization_plot")

在这里插入图片描述

housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4, s=housing["population"]/100, label="population", figsize=(10,7), c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True, sharex=False)

plt.legend()
save_fig("housing_prices_scatterplot")

在这里插入图片描述

import matplotlib.image as mpimg
california_img = mpimg.imread(PROJECT_ROOT_DIR + '/images/end_to_end_project/california.png')
ax = housing.plot(kind="scatter", x="longitude", y="latitude", figsize=(10,7), s=housing['population']/100, label="Population", c="median_house_value", cmap=plt.get_cmap("jet"),  colorbar=False, alpha=0.4,)
plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5, cmap=plt.get_cmap("jet"))
plt.ylabel("Latitude", fontsize=14)
plt.xlabel("Longitude", fontsize=14)

prices = housing["median_house_value"]
tick_values = np.linspace(prices.min(), prices.max(), 11)
cbar = plt.colorbar()
cbar.ax.set_yticklabels(["$%dk"%(round(v/1000)) for v in tick_values], fontsize=14)
cbar.set_label('Median House Value', fontsize=16)

plt.legend(fontsize=16)
save_fig("california_housing_prices_plot")
plt.show()
corr_matrix = housing.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)

在这里插入图片描述

from pandas.plotting import scatter_matrix
attributes = ["median_house_value", "median_income", "total_rooms", "housing_median_age"]
scatter_matrix(housing[attributes], figsize=(12, 8))
save_fig("scatter_matrix_plot")

在这里插入图片描述

housing.plot(kind="scatter", x="median_income", y="median_house_value",alpha=0.1)
plt.axis([0, 16, 0, 550000])
save_fig("income_vs_house_value_scatterplot")

在这里插入图片描述

housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
housing["population_per_household"]=housing["population"]/housing["households"]

corr_matrix = housing.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)

在这里插入图片描述

housing.plot(kind="scatter", x="rooms_per_household", y="median_house_value", alpha=0.2)
plt.axis([0, 5, 0, 520000])
plt.show()

在这里插入图片描述

housing.describe()

在这里插入图片描述

4. 预处理数据,为机器学习算法做准备

housing = strat_train_set.drop("median_house_value", axis=1) # 舍弃训练集中的标记
housing_labels = strat_train_set["median_house_value"].copy()

sample_incomplete_rows = housing[housing.isnull().any(axis=1)].head()
sample_incomplete_rows

在这里插入图片描述

sample_incomplete_rows.dropna(subset=["total_bedrooms"]) # option 1
sample_incomplete_rows.drop("total_bedrooms", axis=1) # option 2

在这里插入图片描述

median = housing["total_bedrooms"].median()
sample_incomplete_rows["total_bedrooms"].fillna(median, inplace=True) # option 3
sample_incomplete_rows

在这里插入图片描述

try:
	from sklearn.impute import SimpleImputer # Scikit-Learn 0.20+
except ImportError:
	from sklearn.preprocessing import Imputer as SimpleImputer

imputer = SimpleImputer(strategy="median")

## 要先移除文本属性的值,再插值
housing_num = housing.drop('ocean_proximity', axis=1)
# alternatively: housing_num = housing.select_dtypes(include=[np.number])

# 计算每一列的中间值
imputer.fit(housing_num)

在这里插入图片描述

# 显示计算的每一列的中间值
imputer.statistics_

在这里插入图片描述

X = imputer.transform(housing_num)
housing_tr = pd.DataFrame(X, columns=housing_num.columns, index=housing.index)

housing_tr.loc[sample_incomplete_rows.index.values]

在这里插入图片描述

imputer.strategy

在这里插入图片描述

housing_tr = pd.DataFrame(X, columns=housing_num.columns, index=housing_num.index)
housing_tr.head()

在这里插入图片描述

housing_cat = housing[['ocean_proximity']]
housing_cat.head(10)

在这里插入图片描述

try:
	from sklearn.preprocessing import OrdinalEncoder
except ImportError:
	from future_encoders import OrdinalEncoder # Scikit-Learn < 0.20

ordinal_encoder = OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)
housing_cat_encoded[:10]

在这里插入图片描述

ordinal_encoder.categories_

在这里插入图片描述

try:
	from sklearn.preprocessing import OrdinalEncoder
	from sklearn.preprocessing import OneHotEncoder
except ImportError:
	from future_encoders import OneHotEncoder

cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
housing_cat_1hot

在这里插入图片描述

housing_cat_1hot.toarray()

在这里插入图片描述

cat_encoder = OneHotEncoder(sparse=False)
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
housing_cat_1hot

在这里插入图片描述

cat_encoder.categories_

在这里插入图片描述

housing.columns
from sklearn.base import BaseEstimator, TransformerMixin

# 获得指定列名的下标
rooms_ix, bedrooms_ix, population_ix, household_ix = [list(housing.columns).index(col) for col in ("total_rooms", "total_bedrooms", "population", "households")]

class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
	# 为原数据集添加新的columns,表征新的属性
	def __init__(self, add_bedrooms_per_room = True): # no *args or **kwargs
		self.add_bedrooms_per_room = add_bedrooms_per_room
	def fit(self, X, y=None):
		return self
	def transform(self, X, y=None):
		rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
		population_per_household = X[:, population_ix] / X[:, household_ix]
		if self.add_bedrooms_per_room:
			bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
			return np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room]
		else:
			return np.c_[X, rooms_per_household, population_per_household]

attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)	
# 另一种方式构建添加新属性的函数
from sklearn.preprocessing import FunctionTransformer

def add_extra_features(X, add_bedrooms_per_room=True):
	rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
	population_per_household = X[:, population_ix] / X[:, household_ix]
	if add_bedrooms_per_room:
		bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
		return np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room]
	else:
		return np.c_[X, rooms_per_household, population_per_household]
attr_adder = FunctionTransformer(add_extra_features, validate=False,kw_args={
    "add_bedrooms_per_room": False})
housing_extra_attribs = attr_adder.fit_transform(housing.values)
housing_extra_attribs = pd.DataFrame(housing_extra_attribs,columns=list(housing.columns)+["rooms_per_household", "population_per_household"], index=housing.index)
housing_extra_attribs.head()

在这里插入图片描述

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

# 用来预处理数值属性的pipeline
num_pipeline = Pipeline([('imputer', SimpleImputer(strategy="median")),
						('attribs_adder', FunctionTransformer(add_extra_features, validate=False)),
						('std_scaler', StandardScaler()),
						])

housing_num_tr = num_pipeline.fit_transform(housing_num)
housing_num_tr

在这里插入图片描述

try:
	from sklearn.compose import ColumnTransformer
except ImportError:
	from future_encoders import ColumnTransformer # Scikit-Learn < 0.20

num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
full_pipeline = ColumnTransformer([
		("num", num_pipeline, num_attribs),
		("cat", OneHotEncoder(), cat_attribs),
	])

housing_prepared = full_pipeline.fit_transform(housing)
housing_prepared

在这里插入图片描述

housing_prepared.shape

在这里插入图片描述

# 另一种构建处理类别和数值属性的pipeline方式
from sklearn.base import BaseEstimator, TransformerMixin

class OldDataFrameSelector(BaseEstimator, TransformerMixin):
	def __init__(self, attribute_names):
		self.attribute_names = attribute_names
	def fit(self, X, y=None):
		return self
	def transform(self, X):
		return X[self.attribute_names].values

num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]

old_num_pipeline = Pipeline([
		('selector', OldDataFrameSelector(num_attribs)),
		('imputer', SimpleImputer(strategy="median")),
		('attribs_adder', FunctionTransformer(add_extra_features, validate=False)),
		('std_scaler', StandardScaler()),
	])

old_cat_pipeline = Pipeline([
		('selector', OldDataFrameSelector(cat_attribs)),
		('cat_encoder', OneHotEncoder(sparse=False)),
	])


from sklearn.pipeline import FeatureUnion

old_full_pipeline = FeatureUnion(transformer_list=[
		 ("num_pipeline", old_num_pipeline),
		 ("cat_pipeline", old_cat_pipeline),
	])

old_housing_prepared = old_full_pipeline.fit_transform(housing)
old_housing_prepared

在这里插入图片描述

np.allclose(housing_prepared, old_housing_prepared)

在这里插入图片描述

5.选择和训练模型

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)

在这里插入图片描述

some_data = housing.iloc[:5]
some_labels = housing_labels.iloc[:5]
some_data_prepared = full_pipeline.transform(some_data)

print("Predictions:", lin_reg.predict(some_data_prepared))

在这里插入图片描述

print("Labels:", list(some_labels))

在这里插入图片描述

some_data_prepared

在这里插入图片描述

from sklearn.metrics import mean_squared_error

housing_predictions = lin_reg.predict(housing_prepared)
lin_mse = mean_squared_error(housing_labels, housing_predictions)
lin_rmse = np.sqrt(lin_mse)
lin_rmse

在这里插入图片描述

from sklearn.metrics import mean_absolute_error

lin_mae = mean_absolute_error(housing_labels, housing_predictions)
lin_mae

在这里插入图片描述

from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(random_state=42)
tree_reg.fit(housing_prepared, housing_labels)

在这里插入图片描述

housing_predictions = tree_reg.predict(housing_prepared)
tree_mse = mean_squared_error(housing_labels, housing_predictions)
tree_rmse = np.sqrt(tree_mse)
tree_rmse

在这里插入图片描述

6.调整模型参数

from sklearn.model_selection import cross_val_score
scores = cross_val_score(tree_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10)
tree_rmse_scores = np.sqrt(-scores)

def display_scores(scores):
	print("Scores:", scores)
	print("Mean:", scores.mean())
	print("Standard deviation:", scores.std())

display_scores(tree_rmse_scores)

在这里插入图片描述

lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10)
lin_rmse_scores = np.sqrt(-lin_scores)
display_scores(lin_rmse_scores)

在这里插入图片描述

from sklearn.ensemble import RandomForestRegressor

forest_reg = RandomForestRegressor(n_estimators=10, random_state=42)
forest_reg.fit(housing_prepared, housing_labels)

在这里插入图片描述

housing_predictions = forest_reg.predict(housing_prepared)
forest_mse = mean_squared_error(housing_labels, housing_predictions)
forest_rmse = np.sqrt(forest_mse)
forest_rmse

在这里插入图片描述

from sklearn.model_selection import cross_val_score 

forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10)
forest_rmse_scores = np.sqrt(-forest_scores)
display_scores(forest_rmse_scores)

在这里插入图片描述

scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10)
pd.Series(np.sqrt(-scores)).describe()

在这里插入图片描述

from sklearn.svm import SVR

svm_reg = SVR(kernel="linear")
svm_reg.fit(housing_prepared, housing_labels)
housing_predictions = svm_reg.predict(housing_prepared)
svm_mse = mean_squared_error(housing_labels, housing_predictions)
svm_rmse = np.sqrt(svm_mse)
svm_rmse

在这里插入图片描述

from sklearn.model_selection import GridSearchCV
param_grid = [
	# 尝试12(3x4)组超参数组合
	{
    'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
	# 设置bootstap为否,尝试6(2x3)组超参数组合
	{
    'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
]
	
forest_reg = RandomForestRegressor(random_state=42)

# 总共训练(12+6)x 5=90轮
grid_search = GridSearchCV(forest_reg, param_grid, cv=5, scoring='neg_mean_squared_error', return_train_score=True)

在这里插入图片描述

grid_search.best_params_

在这里插入图片描述

grid_search.best_estimator_

在这里插入图片描述

cvres = grid_search.cv_results_
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
	print(np.sqrt(-mean_score), params)

在这里插入图片描述

pd.DataFrame(grid_search.cv_results_)

在这里插入图片描述

from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint

param_distribs = {
    
		'n_estimators': randint(low=1, high=200),
		'max_features': randint(low=1, high=8),
	}

forest_reg = RandomForestRegressor(random_state=42)
rnd_search = RandomizedSearchCV(forest_reg, param_distributions=param_distribs, n_iter=10, cv=5, scoring='neg_mean_squared_error', random_state=42)
rnd_search.fit(housing_prepared, housing_labels)

在这里插入图片描述

cvres = rnd_search.cv_results_
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
print(np.sqrt(-mean_score), params)

在这里插入图片描述

feature_importances = grid_search.best_estimator_.feature_importances_
feature_importances

在这里插入图片描述

extra_attribs = ["rooms_per_hhold", "pop_per_hhold", "bedrooms_per_room"]
cat_encoder = full_pipeline.named_transformers_["cat"]
cat_one_hot_attribs = list(cat_encoder.categories_[0])
attributes = num_attribs + extra_attribs + cat_one_hot_attribs
sorted(zip(feature_importances, attributes), reverse=True)

在这里插入图片描述

final_model = grid_search.best_estimator_

X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()

X_test_prepared = full_pipeline.transform(X_test)
final_predictions = final_model.predict(X_test_prepared)

final_mse = mean_squared_error(y_test, final_predictions)
final_rmse = np.sqrt(final_mse)
final_rmse

在这里插入图片描述

from scipy import stats

confidence = 0.95
squared_errors = (final_predictions - y_test) ** 2
mean = squared_errors.mean()
m = len(squared_errors)

np.sqrt(stats.t.interval(confidence, m - 1,
						loc=np.mean(squared_errors),
						scale=stats.sem(squared_errors)))

在这里插入图片描述

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/SanyHo/article/details/106063988

智能推荐

5个超厉害的资源搜索网站,每一款都可以让你的资源满满!_最全资源搜索引擎-程序员宅基地

文章浏览阅读1.6w次,点赞8次,收藏41次。生活中我们无时不刻不都要在网站搜索资源,但就是缺少一个趁手的资源搜索网站,如果有一个比较好的资源搜索网站可以帮助我们节省一大半时间!今天小编在这里为大家分享5款超厉害的资源搜索网站,每一款都可以让你的资源丰富精彩!网盘传奇一款最有效的网盘资源搜索网站你还在为找网站里面的资源而烦恼找不到什么合适的工具而烦恼吗?这款网站传奇网站汇聚了4853w个资源,并且它每一天都会持续更新资源;..._最全资源搜索引擎

Book类的设计(Java)_6-1 book类的设计java-程序员宅基地

文章浏览阅读4.5k次,点赞5次,收藏18次。阅读测试程序,设计一个Book类。函数接口定义:class Book{}该类有 四个私有属性 分别是 书籍名称、 价格、 作者、 出版年份,以及相应的set 与get方法;该类有一个含有四个参数的构造方法,这四个参数依次是 书籍名称、 价格、 作者、 出版年份 。裁判测试程序样例:import java.util.*;public class Main { public static void main(String[] args) { List <Book>_6-1 book类的设计java

基于微信小程序的校园导航小程序设计与实现_校园导航微信小程序系统的设计与实现-程序员宅基地

文章浏览阅读613次,点赞28次,收藏27次。相比于以前的传统手工管理方式,智能化的管理方式可以大幅降低学校的运营人员成本,实现了校园导航的标准化、制度化、程序化的管理,有效地防止了校园导航的随意管理,提高了信息的处理速度和精确度,能够及时、准确地查询和修正建筑速看等信息。课题主要采用微信小程序、SpringBoot架构技术,前端以小程序页面呈现给学生,结合后台java语言使页面更加完善,后台使用MySQL数据库进行数据存储。微信小程序主要包括学生信息、校园简介、建筑速看、系统信息等功能,从而实现智能化的管理方式,提高工作效率。

有状态和无状态登录

传统上用户登陆状态会以 Session 的形式保存在服务器上,而 Session ID 则保存在前端的 Cookie 中;而使用 JWT 以后,用户的认证信息将会以 Token 的形式保存在前端,服务器不需要保存任何的用户状态,这也就是为什么 JWT 被称为无状态登陆的原因,无状态登陆最大的优势就是完美支持分布式部署,可以使用一个 Token 发送给不同的服务器,而所有的服务器都会返回同样的结果。有状态和无状态最大的区别就是服务端会不会保存客户端的信息。

九大角度全方位对比Android、iOS开发_ios 开发角度-程序员宅基地

文章浏览阅读784次。发表于10小时前| 2674次阅读| 来源TechCrunch| 19 条评论| 作者Jon EvansiOSAndroid应用开发产品编程语言JavaObjective-C摘要:即便Android市场份额已经超过80%,对于开发者来说,使用哪一个平台做开发仍然很难选择。本文从开发环境、配置、UX设计、语言、API、网络、分享、碎片化、发布等九个方面把Android和iOS_ios 开发角度

搜索引擎的发展历史

搜索引擎的发展历史可以追溯到20世纪90年代初,随着互联网的快速发展和信息量的急剧增加,人们开始感受到了获取和管理信息的挑战。这些阶段展示了搜索引擎在技术和商业模式上的不断演进,以满足用户对信息获取的不断增长的需求。

随便推点

控制对象的特性_控制对象特性-程序员宅基地

文章浏览阅读990次。对象特性是指控制对象的输出参数和输入参数之间的相互作用规律。放大系数K描述控制对象特性的静态特性参数。它的意义是:输出量的变化量和输入量的变化量之比。时间常数T当输入量发生变化后,所引起输出量变化的快慢。(动态参数) ..._控制对象特性

FRP搭建内网穿透(亲测有效)_locyanfrp-程序员宅基地

文章浏览阅读5.7w次,点赞50次,收藏276次。FRP搭建内网穿透1.概述:frp可以通过有公网IP的的服务器将内网的主机暴露给互联网,从而实现通过外网能直接访问到内网主机;frp有服务端和客户端,服务端需要装在有公网ip的服务器上,客户端装在内网主机上。2.简单的图解:3.准备工作:1.一个域名(www.test.xyz)2.一台有公网IP的服务器(阿里云、腾讯云等都行)3.一台内网主机4.下载frp,选择适合的版本下载解压如下:我这里服务器端和客户端都放在了/usr/local/frp/目录下4.执行命令# 服务器端给执_locyanfrp

UVA 12534 - Binary Matrix 2 (网络流‘最小费用最大流’ZKW)_uva12534-程序员宅基地

文章浏览阅读687次。题目:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=93745#problem/A题意:给出r*c的01矩阵,可以翻转格子使得0表成1,1变成0,求出最小的步数使得每一行中1的个数相等,每一列中1的个数相等。思路:网络流。容量可以保证每一行和每一列的1的个数相等,费用可以算出最小步数。行向列建边,如果该格子是_uva12534

免费SSL证书_csdn alphassl免费申请-程序员宅基地

文章浏览阅读504次。1、Let's Encrypt 90天,支持泛域名2、Buypass:https://www.buypass.com/ssl/resources/go-ssl-technical-specification6个月,单域名3、AlwaysOnSLL:https://alwaysonssl.com/ 1年,单域名 可参考蜗牛(wn789)4、TrustAsia5、Alpha..._csdn alphassl免费申请

测试算法的性能(以选择排序为例)_算法性能测试-程序员宅基地

文章浏览阅读1.6k次。测试算法的性能 很多时候我们需要对算法的性能进行测试,最简单的方式是看算法在特定的数据集上的执行时间,简单的测试算法性能的函数实现见testSort()。【思想】:用clock_t计算某排序算法所需的时间,(endTime - startTime)/ CLOCKS_PER_SEC来表示执行了多少秒。【关于宏CLOCKS_PER_SEC】:以下摘自百度百科,“CLOCKS_PE_算法性能测试

Lane Detection_lanedetectionlite-程序员宅基地

文章浏览阅读1.2k次。fromhttps://towardsdatascience.com/finding-lane-lines-simple-pipeline-for-lane-detection-d02b62e7572bIdentifying lanes of the road is very common task that human driver performs. This is important ..._lanedetectionlite

推荐文章

热门文章

相关标签