模型预测控制器(MPC)系列: 1.建立车辆横向动力学模型_mpc动力学模型-程序员宅基地

技术标签: 模型预测控制  控制器  

勘误 Update 02/23/2021

之前的文章中有不严谨的地方,这里做一个勘误.错误就在下面描述坐标系的图中.<更正后的图已覆盖到坐标系小节下>
在这里插入图片描述在这个图中,我指出ENU坐标下,车自身的朝向角 ψ \psi ψ 近似等于理想路径上匹配点(最近的一个点)的朝向角 ψ m a t c h \psi_{match} ψmatch. 其实这是不成立的.考虑以下这个场景,理想轨迹平行于ENU坐标x轴,即朝东.此时车身朝向东偏北,显然车身朝向角 ψ \psi ψ 与理想路径上匹配点(距车辆最近的一个点)的朝向角 ψ m a t c h \psi_{match} ψmatch不相同,详见下图.
在这里插入图片描述
那么我一开始是怎么得出错误的结论呢?这就要回到百度apollo的MPC相关代码中. 其中计算横向误差的代码为

  const double dx = x - matched_point.path_point().x();
  const double dy = y - matched_point.path_point().y();

  const double cos_matched_theta = std::cos(matched_point.path_point().theta());
  const double sin_matched_theta = std::sin(matched_point.path_point().theta());
  // d_error = cos_matched_theta * dy - sin_matched_theta * dx;
  debug->set_lateral_error(cos_matched_theta * dy - sin_matched_theta * dx);

可以看到,计算横向误差 e 1 e_1 e1 时, Apollo 的开发者使用的是理想轨迹上匹配点的朝向角 ψ m a t c h \psi_{match} ψmatch,即代码中的matched_point.path_point().theta()
这个操作,就是把 E N U ENU ENU世界坐标系下的位置误差dx,dy,转到了 F r e n e t Frenet Frenet坐标系下表述.需要注意的是,所有的受力分析均是在 F L U FLU FLU车身坐标系下完成的,也就是说所有的状态量,包括横向误差 e 1 e_1 e1也应是在 F L U FLU FLU坐标系下表述.所以,计算横向误差 e 1 e_1 e1时,应该采用车身的朝向角 ψ \psi ψ.

代入到我刚才举得例子中,如果采用理想轨迹上匹配点的朝向角计算,会得到
已 知 : d x = 0 , d y = l 1 ψ m a t c h = 0 , ψ ≠ 0 因 此 : e 1 = c o s ψ m a t c h d y − s i n ψ m a t c h d x = d y = l 1 \begin{aligned} 已知:&\\ &dx=0,dy=l_1\\ &\psi_{match}=0,\psi \neq 0 \\ 因此:&\\ &e_1 = cos\psi_{match}dy - sin\psi_{match}dx = dy = l_1 \end{aligned} ::dx=0,dy=l1ψmatch=0,ψ=0e1=cosψmatchdysinψmatchdx=dy=l1
若采用车身的朝向角计算,会得到
e 1 = c o s ψ d y − s i n ψ d x = l 2 \begin{aligned} &e_1 = cos\psi dy - sin\psi dx = l_2 \end{aligned} e1=cosψdysinψdx=l2
显然, F L U FLU FLU坐标系下的横向误差,即 β \beta β方向的横向误差应是 l 2 l_2 l2.

为了比较两种计算方法对MPC控制性能的影响,我跑了几次仿真,结果影响并不是很大.但是我始终觉得这样做不严谨,我并不清楚 Apollo 开发者这么写的理由是什么?不知道是否有工程上的考量?如果有大神了解或者有任何想法,可以在评论区一起讨论,非常感谢.

Hi All

新年挖新坑,今日开启船新连载.内容是无人车的横向控制,整体涵盖从0-1为车辆横向控制设计MPC控制器设计与MPC+MRAC耦合控制.大家有问题,有兴趣可以在评论区多多交流.原图如下

车辆横向动力学模型

引言

首先我们要问:针对车辆横向控制的问题,我们为什么需要建立动力学模型?
简单来说,当车辆在较高速度下行驶时,运动学模型(自行车模型)中提出"汽车轮胎速度方向与车辆朝向相同"的假设不再成立.车辆受到的横向力将不可忽视,如向心力将随着速度的增大而平方倍地增大.因此引入动力学模型,旨在建立更高阶量之间的联系,以更好地描述车辆转弯的非线性特性.

那么,让我们开始吧.为了在不失一般性的前提下尽可能简化模型,动力学模型将建立在以下几个假设上
1.轮胎速度方向与车辆纵向方向( x )的夹角 θ v (后统称轮胎速度方向角)较小且满足小角度假设: a )   θ v ≈ t a n θ v 2.轮胎转角( δ )与轮胎速度方向角( θ v )的夹角 α (后统称轮胎侧滑角)较小 3.车辆纵向速度维持不变: a )   V x : = C o n s t a n t 4.忽略路堤角( ϕ )对横向控制的影响 \begin{aligned} &\text{1.轮胎速度方向与车辆纵向方向($x$)的夹角$\theta_v$(后统称轮胎速度方向角)较小且满足小角度假设:}\\ &\qquad a) \ \theta_v \approx tan\theta_v \\ &\text{2.轮胎转角($\delta$)与轮胎速度方向角($\theta_v$)的夹角$\alpha$(后统称轮胎侧滑角)较小} \\ &\text{3.车辆纵向速度维持不变:} \\ &\qquad a) \ V_x : = Constant \\ &\text{4.忽略路堤角($\phi$)对横向控制的影响} \end{aligned} 1.轮胎速度方向与车辆纵向方向(x)的夹角θv(后统称轮胎速度方向角)较小且满足小角度假设:a) θvtanθv2.轮胎转角(δ)与轮胎速度方向角(θv)的夹角α(后统称轮胎侧滑角)较小3.车辆纵向速度维持不变:a) Vx:=Constant4.忽略路堤角(ϕ)对横向控制的影响

坐标系

本模型在 F L U (Front-Left-Universe) FLU \text{(Front-Left-Universe)} FLU(Front-Left-Universe) 惯性坐标系下建立.坐标系原点固定在车辆质心位置, x x x轴方向为车辆纵向方向,指向车头前方. y y y轴方向与x轴垂直且指向车辆左侧, z z z轴方向垂直于 x x x, y y y轴且指向天空.值得注意的是,全局(地图)坐标系为ENU(East-North-Universe),其xyz指向规则于FLU相似,分别指向东北天.还有一个局部坐标系为Frenet坐标系,其固定在理想轨迹上,这里就不展开讲了,详见下图.
在这里插入图片描述

受力分析

车辆受力分析图如下
在这里插入图片描述

根据牛顿第二定律,对车辆y方向(横向)进行受力分析
F y f + F y r = m a y F_{yf} + F_{yr} = ma_y Fyf+Fyr=may
其中 F y f F_{yf} Fyf F y r F_{yr} Fyr 分别是车辆前轮和后轮在 y y y方向受到的力, m m m为车辆质量, a y a_y ay为车辆在 y y y方向上的加速度.

车辆在 y y y方向上的加速度由两部分构成:
1.因车辆在 y y y方向上运动产生的加速度,定义为 y ¨ \ddot{y} y¨.
2.车辆的向心加速度,记为 a y c a_{yc} ayc.
a y = y ¨ + a y c = y ¨ + ω 2 R = y ¨ + ψ ˙ 2 R = y ¨ + V x ψ ˙ a_y = \ddot{y}+a_{yc} = \ddot{y}+\omega^2R = \ddot{y}+\dot{\psi}^2R = \ddot{y}+V_x\dot{\psi} ay=y¨+ayc=y¨+ω2R=y¨+ψ˙2R=y¨+Vxψ˙

因此
F y f + F y r = m ( y ¨ + V x ψ ˙ ) F_{yf} + F{yr} = m(\ddot{y}+V_x\dot{\psi}) Fyf+Fyr=m(y¨+Vxψ˙)

对z轴进行偏航动力学分析,由力矩平衡可得
I z ψ ¨ = l f F y f − l r F y r I_z\ddot{\psi}=l_fF_{yf} - l_rF_{yr} Izψ¨=lfFyflrFyr
其中 l f l_f lf l r l_r lr 分别是车辆前轮和后轮距离车辆重心的距离.

下一步,我们要对横向力 F y f F_{yf} Fyf F y r F_{yr} Fyr 进行分析.实验表明,当轮胎侧滑角 α \alpha α 较小时,轮胎受到的横向力的大小与轮胎侧滑角成正比.其中轮胎侧滑角被定义为轮胎转角与轮胎速度方向角的夹角.

因此,前轮(方向轮)侧滑角 α f \alpha_f αf
α f = δ − θ v f \alpha_f = \delta - \theta_{vf} αf=δθvf
其中 δ \delta δ为前轮转角, θ v f \theta_{vf} θvf 为前轮速度方向角.

同理,后轮(假定后轮无法转向)侧滑角为
α r = 0 − θ v r = − θ v r \alpha_r = 0 - \theta_{vr} = - \theta_{vr} αr=0θvr=θvr
其中 θ v r \theta_{vr} θvr 为后轮速度方向角.

基于上述两点推断, 轮胎横向力可被改写为以下形式
F y f = 2 C α f ( δ − θ v f ) F y r = − 2 C α r θ v r \begin{aligned} &F_{yf} = 2C_{\alpha_f}(\delta - \theta_{vf}) \\ &F_{yr} = -2C_{\alpha_r}\theta_{vr} \end{aligned} Fyf=2Cαf(δθvf)Fyr=2Cαrθvr
其中 C α f C_{\alpha_f} Cαf C α r C_{\alpha_r} Cαr 分别为前轮与后轮的侧滑刚度系数.

由小角度假设与牵连运动公式可得
θ v f ≈ t a n ( θ v f ) = y ˙ + l f ψ ˙ V x θ v r ≈ t a n ( θ v r ) = y ˙ − l r ψ ˙ V x \begin{aligned} &\theta_{vf} \approx tan(\theta_{vf}) = \frac{\dot{y} + l_f\dot{\psi}}{V_x} \\ &\theta_{vr} \approx tan(\theta_{vr}) = \frac{\dot{y} - l_r\dot{\psi}}{V_x} \end{aligned} θvftan(θvf)=Vxy˙+lfψ˙θvrtan(θvr)=Vxy˙lrψ˙

综上可得

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_42623186/article/details/113887445

智能推荐

python简易爬虫v1.0-程序员宅基地

文章浏览阅读1.8k次,点赞4次,收藏6次。python简易爬虫v1.0作者:William Ma (the_CoderWM)进阶python的首秀,大部分童鞋肯定是做个简单的爬虫吧,众所周知,爬虫需要各种各样的第三方库,例如scrapy, bs4, requests, urllib3等等。此处,我们先从最简单的爬虫开始。首先,我们需要安装两个第三方库:requests和bs4。在cmd中输入以下代码:pip install requestspip install bs4等安装成功后,就可以进入pycharm来写爬虫了。爬

安装flask后vim出现:error detected while processing /home/zww/.vim/ftplugin/python/pyflakes.vim:line 28_freetorn.vim-程序员宅基地

文章浏览阅读2.6k次。解决方法:解决方法可以去github重新下载一个pyflakes.vim。执行如下命令git clone --recursive git://github.com/kevinw/pyflakes-vim.git然后进入git克降目录,./pyflakes-vim/ftplugin,通过如下命令将python目录下的所有文件复制到~/.vim/ftplugin目录下即可。cp -R ...._freetorn.vim

HIT CSAPP大作业:程序人生—Hello‘s P2P-程序员宅基地

文章浏览阅读210次,点赞7次,收藏3次。本文简述了hello.c源程序的预处理、编译、汇编、链接和运行的主要过程,以及hello程序的进程管理、存储管理与I/O管理,通过hello.c这一程序周期的描述,对程序的编译、加载、运行有了初步的了解。_hit csapp

18个顶级人工智能平台-程序员宅基地

文章浏览阅读1w次,点赞2次,收藏27次。来源:机器人小妹  很多时候企业拥有重复,乏味且困难的工作流程,这些流程往往会减慢生产速度并增加运营成本。为了降低生产成本,企业别无选择,只能自动化某些功能以降低生产成本。  通过数字化..._人工智能平台

electron热加载_electron-reloader-程序员宅基地

文章浏览阅读2.2k次。热加载能够在每次保存修改的代码后自动刷新 electron 应用界面,而不必每次去手动操作重新运行,这极大的提升了开发效率。安装 electron 热加载插件热加载虽然很方便,但是不是每个 electron 项目必须的,所以想要舒服的开发 electron 就只能给 electron 项目单独的安装热加载插件[electron-reloader]:// 在项目的根目录下安装 electron-reloader,国内建议使用 cnpm 代替 npmnpm install electron-relo._electron-reloader

android 11.0 去掉recovery模式UI页面的选项_android recovery 删除 部分菜单-程序员宅基地

文章浏览阅读942次。在11.0 进行定制化开发,会根据需要去掉recovery模式的一些选项 就是在device.cpp去掉一些选项就可以了。_android recovery 删除 部分菜单

随便推点

echart省会流向图(物流运输、地图)_java+echart地图+物流跟踪-程序员宅基地

文章浏览阅读2.2k次,点赞2次,收藏6次。继续上次的echart博客,由于省会流向图是从echart画廊中直接取来的。所以直接上代码<!DOCTYPE html><html><head> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width,initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no" /&_java+echart地图+物流跟踪

Ceph源码解析:读写流程_ceph 发送数据到其他副本的源码-程序员宅基地

文章浏览阅读1.4k次。一、OSD模块简介1.1 消息封装:在OSD上发送和接收信息。cluster_messenger -与其它OSDs和monitors沟通client_messenger -与客户端沟通1.2 消息调度:Dispatcher类,主要负责消息分类1.3 工作队列:1.3.1 OpWQ: 处理ops(从客户端)和sub ops(从其他的OSD)。运行在op_tp线程池。1...._ceph 发送数据到其他副本的源码

进程调度(一)——FIFO算法_进程调度fifo算法代码-程序员宅基地

文章浏览阅读7.9k次,点赞3次,收藏22次。一 定义这是最早出现的置换算法。该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单,只需把一个进程已调入内存的页面,按先后次序链接成一个队列,并设置一个指针,称为替换指针,使它总是指向最老的页面。但该算法与进程实际运行的规律不相适应,因为在进程中,有些页面经常被访问,比如,含有全局变量、常用函数、例程等的页面,FIFO 算法并不能保证这些页面不被淘汰。这里,我_进程调度fifo算法代码

mysql rownum写法_mysql应用之类似oracle rownum写法-程序员宅基地

文章浏览阅读133次。rownum是oracle才有的写法,rownum在oracle中可以用于取第一条数据,或者批量写数据时限定批量写的数量等mysql取第一条数据写法SELECT * FROM t order by id LIMIT 1;oracle取第一条数据写法SELECT * FROM t where rownum =1 order by id;ok,上面是mysql和oracle取第一条数据的写法对比,不过..._mysql 替换@rownum的写法

eclipse安装教程_ecjelm-程序员宅基地

文章浏览阅读790次,点赞3次,收藏4次。官网下载下载链接:http://www.eclipse.org/downloads/点击Download下载完成后双击运行我选择第2个,看自己需要(我选择企业级应用,如果只是单纯学习java选第一个就行)进入下一步后选择jre和安装路径修改jvm/jre的时候也可以选择本地的(点后面的文件夹进去),但是我们没有11版本的,所以还是用他的吧选择接受安装中安装过程中如果有其他界面弹出就点accept就行..._ecjelm

Linux常用网络命令_ifconfig 删除vlan-程序员宅基地

文章浏览阅读245次。原文链接:https://linux.cn/article-7801-1.htmlifconfigping &lt;IP地址&gt;:发送ICMP echo消息到某个主机traceroute &lt;IP地址&gt;:用于跟踪IP包的路由路由:netstat -r: 打印路由表route add :添加静态路由路径routed:控制动态路由的BSD守护程序。运行RIP路由协议gat..._ifconfig 删除vlan