设计模式笔记-程序员宅基地

技术标签: 笔记  设计模式  

1.设计模式概述

学习设计模式的必要性

设计模式的本质是面向对象设计原则的实际运用,是对类的封装性、继承性和多态性以及类的关联关系
和组合关系的充分理解。
正确使用设计模式具有以下优点。

  • 可以提高程序员的思维能力、编程能力和设计能力。
  • 使程序设计更加标准化、代码编制更加工程化,使软件开发效率大大提高,从而缩短软件的开发周
    期。
  • 使设计的代码可重用性高、可读性强、可靠性高、灵活性好、可维护性强。

设计模式分类

  • 创建型模式

用于描述“怎样创建对象”,它的主要特点是“将对象的创建与使用分离”。GoF(四人组)书中提供了单例、原型、工厂方法、抽象工厂、建造者等 5 种创建型模式。

  • 结构型模式

用于描述如何将类或对象按某种布局组成更大的结构,GoF(四人组)书中提供了代理、适配器、
桥接、装饰、外观、享元、组合等 7 种结构型模式。

  • 行为型模式

用于描述类或对象之间怎样相互协作共同完成单个对象无法单独完成的任务,以及怎样分配职责。
GoF(四人组)书中提供了模板方法、策略、命令、职责链、状态、观察者、中介者、迭代器、访
问者、备忘录、解释器等 11 种行为型模式。


2.UML图

统一建模语言(Unified Modeling Language,UML)是用来设计软件的可视化建模语言。它的特点是简单、统一、图形化、能表达软件设计中的动态与静态信息。
UML 从目标系统的不同角度出发,定义了用例图、类图、对象图、状态图、活动图、时序图、协作
图、构件图、部署图等 9 种图

类图概述

类图(Class diagram)是显示了模型的静态结构,特别是模型中存在的类、类的内部结构以及它们与其他类的关系等。类图不显示暂时性的信息。类图是面向对象建模的主要组成部分。

类图的作用

  • 在软件工程中,类图是一种静态的结构图,描述了系统的类的集合,类的属性和类之间的关系,可以简化了人们对系统的理解;
  • 类图是系统分析和设计阶段的重要产物,是系统编码和测试的重要模型。

类图表示法

类的表示方式

在UML类图中,类使用包含类名、属性(field) 和方法(method) 且带有分割线的矩形来表示,比如下图表示一个Employee类,它包含name,age和address这3个属性,以及work()方法。
在这里插入图片描述
属性/方法名称前加的加号和减号表示了这个属性/方法的可见性,UML类图中表示可见性的符号有三种:

  • +:表示public
  • -:表示private
  • #:表示protected

属性的完整表示方式是: 可见性 名称 :类型 [ = 缺省值]
方法的完整表示方式是: 可见性 名称(参数列表) [ : 返回类型]

注意:
1,中括号中的内容表示是可选的
2,也有将类型放在变量名前面,返回值类型放在方法名前面

例子:
在这里插入图片描述
上图Demo类定义了三个方法:

  • method()方法:修饰符为public,没有参数,没有返回值。
  • method1()方法:修饰符为private,没有参数,返回值类型为String。
  • method2()方法:修饰符为protected,接收两个参数,第一个参数类型为int,第二个参数类型为String,返回值类型是int。

类与类之间关系的表示方式

关联关系

关联关系是对象之间的一种引用关系,用于表示一类对象与另一类对象之间的联系,如老师和学生、师傅和徒弟、丈夫和妻子等。关联关系是类与类之间最常用的一种关系,分为一般关联关系、聚合关系和组合关系。我们先介绍一般关联。关联又可以分为单向关联,双向关联,自关联。

  1. 单向关联

在这里插入图片描述
在UML类图中单向关联用一个带箭头的实线表示。上图表示每个顾客都有一个地址,这通过让Customer类持有一个类型为Address的成员变量类实现。

  1. 双向关联

在这里插入图片描述
从上图中我们很容易看出,所谓的双向关联就是双方各自持有对方类型的成员变量。
在UML类图中,双向关联用一个不带箭头的直线表示。上图中在Customer类中维护一个List,表示一个顾客可以购买多个商品;在Product类中维护一个Customer类型的成员变量表示这个产品被哪个顾客所购买。

  1. 自关联

在这里插入图片描述
自关联在UML类图中用一个带有箭头且指向自身的线表示。上图的意思就是Node类包含类型为Node的成员变量,也就是“自己包含自己”。

聚合关系
  • 聚合关系是关联关系的一种,是强关联关系,是整体和部分之间的关系。
  • 聚合关系也是通过成员对象来实现的,其中成员对象是整体对象的一部分,但是成员对象可以脱离整体对象而独立存在。例如,学校与老师的关系,学校包含老师,但如果学校停办了,老师依然存在。
  • 在 UML 类图中,聚合关系可以用带空心菱形的实线来表示,菱形指向整体。下图所示是大学和教师的关系图:
    在这里插入图片描述
组合关系
  • 组合表示类之间的整体与部分的关系,但它是一种更强烈的聚合关系。
  • 在组合关系中,整体对象可以控制部分对象的生命周期,一旦整体对象不存在,部分对象也将不存在,部分对象不能脱离整体对象而存在。例如,头和嘴的关系,没有了头,嘴也就不存在了。
  • 在 UML 类图中,组合关系用带实心菱形的实线来表示,菱形指向整体。下图所示是头和嘴的关系图:
    在这里插入图片描述
依赖关系
  • 依赖关系是一种使用关系,它是对象之间耦合度最弱的一种关联方式,是临时性的关联。在代码中,某个类的方法通过局部变量、方法的参数或者对静态方法的调用来访问另一个类(被依赖类)中的某些方法来完成一些职责
  • 在 UML 类图中,依赖关系使用带箭头的虚线来表示,箭头从使用类指向被依赖的类。下图所示是司机和汽车的关系图,司机驾驶汽车:
    在这里插入图片描述
继承关系
  • 继承关系是对象之间耦合度最大的一种关系,表示一般与特殊的关系,是父类与子类之间的关系,是一种继承关系
  • 在 UML 类图中,泛化关系用带空心三角箭头的实线来表示,箭头从子类指向父类。在代码实现时,使用面向对象的继承机制来实现泛化关系。例如,Student 类和 Teacher 类都是 Person 类的子类,其类图如下图所示:
    在这里插入图片描述
实现关系
  • 实现关系是接口与实现类之间的关系。在这种关系中,类实现了接口,类中的操作实现了接口中所声明的所有的抽象操作
  • 在 UML 类图中,实现关系使用带空心三角箭头的虚线来表示,箭头从实现类指向接口。例如,汽车和船实现了交通工具,其类图如图 9所示。
    在这里插入图片描述

3.软件设计原则

开闭原则

  • 对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。简言之,是为了使程序的扩展性好,易于维护和升级
  • 想要达到这样的效果,我们需要使用接口和抽象类。
  • 因为抽象灵活性好,适应性广,只要抽象的合理,可以基本保持软件架构的稳定。而软件中易变的细节可以从抽象派生来的实现类来进行扩展,当软件需要发生变化时,只需要根据需求重新派生一个实现类来扩展就可以了。

在这里插入图片描述

/**
 * @ClassName AbstractSkin
 * @Author zdz
 * @Description: 抽象皮肤类
 * @Date 2023/11/7 21:45
 **/
public abstract class AbstractSkin {
    
    // 显示的方法
    public abstract void display();
}
/**
 * @ClassName DefaultSkin
 * @Author zdz
 * @Description: 默认皮肤类
 * @Date 2023/11/7 21:47
 **/
public class DefaultSkin extends AbstractSkin{
    
    public void display() {
    
        System.out.println("默认皮肤");
    }
}
/**
 * @ClassName BlackSkin
 * @Author zdz
 * @Description: 黑色皮肤类
 * @Date 2023/11/7 21:48
 **/
public class BlackSkin extends AbstractSkin{
    
    public void display() {
    
        System.out.println("黑色皮肤");
    }
}
/**
 * @ClassName SougoInput
 * @Author zdz
 * @Description: 搜狗输入法
 * @Date 2023/11/7 21:50
 **/
public class SougoInput {
    
    private AbstractSkin skin;

    public void setSkin(AbstractSkin skin) {
    
        this.skin = skin;
    }

    public void display() {
    
        skin.display();
    }
}

在这里插入图片描述

里氏代换原则

  • 里氏代换原则是面向对象设计的基本原则之一。
  • 里氏代换原则:任何基类可以出现的地方,子类一定可以出现。通俗理解:子类可以扩展父类的功能,但不能改变父类原有的功能。换句话说,子类继承父类时,除添加新的方法完成新增功能外,尽量不要重写父类的方法。
  • 如果通过重写父类的方法来完成新的功能,这样写起来虽然简单,但是整个继承体系的可复用性会比较差,特别是运用多态比较频繁时,程序运行出错的概率会非常大。
  • 下面看一个里氏替换原则中经典的一个例子

【例】正方形不是长方形。
在数学领域里,正方形毫无疑问是长方形,它是一个长宽相等的长方形。所以,我们开发的一个与几何图形相关的软件系统,就可以顺理成章的让正方形继承自长方形。
在这里插入图片描述

代码如下:

/**
 * @ClassName Rectangle
 * @Author zdz
 * @Description: 长方形
 * @Date 2023/11/7 22:08
 **/
public class Rectangle {
    
    private double length;
    private double width;

    public double getLength() {
    
        return length;
    }

    public void setLength(double length) {
    
        this.length = length;
    }

    public double getWidth() {
    
        return width;
    }

    public void setWidth(double width) {
    
        this.width = width;
    }
}
/**
 * @ClassName Square
 * @Author zdz
 * @Description: 正方形
 * @Date 2023/11/7 22:09
 **/
public class Square extends Rectangle{
    
    @Override
    public void setWidth(double width) {
    
        super.setLength(width);
        super.setWidth(width);
    }

    @Override
    public void setLength(double length) {
    
        super.setWidth(length);
        super.setLength(length);
    }
}
public class RectangleDemo {
    
    public static void main(String[] args) {
    
        Rectangle r  = new Rectangle();
        r.setWidth(10);
        r.setLength(15);
        resize(r);
        printLengthAndWidth(r);
        System.out.println("==========");
        Rectangle s = new Square();
        s.setLength(10);
        resize(s);
        printLengthAndWidth(s);
    }

    public static void resize(Rectangle r){
    
        while (r.getWidth() <= r.getLength()){
    
            r.setWidth(r.getWidth() + 1);
        }
    }

    public static void printLengthAndWidth(Rectangle r){
    
        System.out.println(r.getWidth());
        System.out.println(r.getLength());
    }
}

在这里插入图片描述

我们运行一下这段代码就会发现,假如我们把一个普通长方形作为参数传入resize方法,就会看到长方形宽度逐渐增长的效果,当宽度大于长度,代码就会停止,这种行为的结果符合我们的预期;假如我们再把一个正方形作为参数传入resize方法后,就会看到正方形的宽度和长度都在不断增长,代码会一直运行下去,直至系统产生溢出错误。所以,普通的长方形是适合这段代码的,正方形不适合。 我们得出结论:在resize方法中,Rectangle类型的参数是不能被Square类型的参数所代替,如果进行了替换就得不到预期结果。因此,Square类Rectangle类之间的继承关系违反了里氏代换原则,它们之间的继承关系不成立,正方形不是长方形。
如何改进呢?此时我们需要重新设计他们之间的关系。抽象出来一个四边形接口(Quadrilateral),
让Rectangle类和Square类实现Quadrilateral接口
在这里插入图片描述

/**
 * @version 1.0
 * @ClassName Quadrilateral
 * @Description 四边形接口
 * @Author zdz
 * @Date 2023/11/7 22:19
 **/
public interface Quadrilateral {
    
    double getLength();
    double getWidth();
}
/**
 * @ClassName Rectangle
 * @Author zdz
 * @Description 长方形接口
 * @Date 2023/11/7 22:20
 **/
public class Rectangle implements Quadrilateral{
    
    private double length;
    private double width;

    public void setLength(double length) {
    
        this.length = length;
    }

    public void setWidth(double width) {
    
        this.width = width;
    }

    public double getLength() {
    
        return length;
    }

    public double getWidth() {
    
        return width;
    }
}

/**
 * @ClassName Square
 * @Author zdz
 * @Description 正方形接口
 * @Date 2023/11/7 22:19
 **/
public class Square implements Quadrilateral{
    
    private double side;

    public double getSide() {
    
        return side;
    }

    public void setSide(double side) {
    
        this.side = side;
    }

    public double getLength() {
    
        return side;
    }

    public double getWidth() {
    
        return side;
    }
}
public class RectangleDemo {
    
    public static void main(String[] args) {
    
        Rectangle r = new Rectangle();
        r.setWidth(10);
        r.setLength(15);
        resize(r);
        printLengthAndWidth(r);
        System.out.println("==========");
        Square s = new Square();
        s.setSide(10);
        printLengthAndWidth(s);
    }

    public static void resize(Rectangle r) {
    
        while (r.getWidth() <= r.getLength()) {
    
            r.setWidth(r.getWidth() + 1);
        }
    }

    public static void printLengthAndWidth(Quadrilateral q) {
    
        System.out.println(q.getLength());
        System.out.println(q.getWidth());
    }
}

依赖倒转原则

高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象。简单的说就是要求对抽象进行编程,不要对实现进行编程,这样就降低了客户与实现模块间的耦合。
下面看一个例子来理解依赖倒转原则
【例】组装电脑
现要组装一台电脑,需要配件cpu,硬盘,内存条。只有这些配置都有了,计算机才能正常的运行。选择cpu有很多选择,如Intel,AMD等,硬盘可以选择希捷,西数等,内存条可以选择金士顿,海盗船等。
在这里插入图片描述
以上可以看出似乎组装的电脑的cpu只能是Intel的,内存条只能是金士顿的,硬盘只能是希捷的,这对用户肯定是不友好的,用户有了机箱肯定是想按照自己的喜好,选择自己喜欢的配件。

根据依赖倒转原则进行改进:
代码我们只需要修改Computer类,让Computer类依赖抽象(各个配件的接口),而不是依赖于各个组件具体的实现类。
在这里插入图片描述
面向对象的开发很好的解决了这个问题,一般情况下抽象的变化概率很小,让用户程序依赖于抽象,实现的细节也依赖于抽象。即使实现细节不断变动,只要抽象不变,客户程序就不需要变化。这大大降低了客户程序与实现细节的耦合度

接口隔离原则

客户端不应该被迫依赖于它不使用的方法;一个类对另一个类的依赖应该建立在最小的接口上。
下面看一个例子来理解接口隔离原则
【例】安全门案例
我们需要创建一个 黑马品牌的安全门,该安全门具有防火、防水、防盗的功能。可以将防火,防水,防盗功能提取成一个接口,形成一套规范。类图如下:
在这里插入图片描述
上面的设计我们发现了它存在的问题,黑马品牌的安全门具有防盗,防水,防火的功能。现在如果我们还需要再创建一个传智品牌的安全门,而该安全门只具有防盗、防水功能呢?很显然如果实现SafetyDoor接口就违背了接口隔离原则,那么我们如何进行修改呢?看如下类图:
在这里插入图片描述

迪米特法则

  • 迪米特法则又叫最少知识原则。
  • 只和你的直接朋友交谈,不跟“陌生人”说话(Talk only to your immediate friends andnot to strangers)。
  • 其含义是:如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块的相对独立性。
  • 迪米特法则中的“朋友”是指:当前对象本身、当前对象的成员对象、当前对象所创建的对象、当前对象的方法参数等,这些对象同当前对象存在关联、聚合或组合关系,可以直接访问这些对象的方法。
  • 下面看一个例子来理解迪米特法则

【例】明星与经纪人的关系实例

  • 明星由于全身心投入艺术,所以许多日常事务由经纪人负责处理,如和粉丝的见面会,和媒体公司的业务洽淡等。这里的经纪人是明星的朋友,而粉丝和媒体公司是陌生人,所以适合使用迪米特法则。
    类图如下:
    在这里插入图片描述

合成复用原则

合成复用原则是指:尽量先使用组合或者聚合等关联关系来实现,其次才考虑使用继承关系来实现。
通常类的复用分为继承复用和合成复用两种。
继承复用虽然有简单和易实现的优点,但它也存在以下缺点:

  1. 继承复用破坏了类的封装性。因为继承会将父类的实现细节暴露给子类,父类对子类是透明的,所以这种复用又称为“白箱”复用。
  2. 子类与父类的耦合度高。父类的实现的任何改变都会导致子类的实现发生变化,这不利于类的扩展与维护。
  3. 它限制了复用的灵活性。从父类继承而来的实现是静态的,在编译时已经定义,所以在运行时不可能发生变化

采用组合或聚合复用时,可以将已有对象纳入新对象中,使之成为新对象的一部分,新对象可以调用已有对象的功能,它有以下优点:

  1. 它维持了类的封装性。因为成分对象的内部细节是新对象看不见的,所以这种复用又称为“黑箱”复用。
  2. 对象间的耦合度低。可以在类的成员位置声明抽象。
  3. 复用的灵活性高。这种复用可以在运行时动态进行,新对象可以动态地引用与成分对象类型相同的对象。

下面看一个例子来理解合成复用原则
【例】汽车分类管理程序
汽车按“动力源”划分可分为汽油汽车、电动汽车等;按“颜色”划分可分为白色汽车、黑色汽车和红色汽车等。如果同时考虑这两种分类,其组合就很多。类图如下:
在这里插入图片描述
从上面类图我们可以看到使用继承复用产生了很多子类,如果现在又有新的动力源或者新的颜色的话,就需要再定义新的类。我们试着将继承复用改为聚合复用看一下在这里插入图片描述

4.创建者模式

单例设计模式

  • 单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。
  • 这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象

单例模式的主要有以下角色:

  • 单例类。只能创建一个实例的类
  • 访问类。使用单例类

单例设计模式分类两种:

  • 饿汉式:类加载就会导致该单实例对象被创建
  • 懒汉式:类加载不会导致该单实例对象被创建,而是首次使用该对象时才会创建

饿汉式

  1. 饿汉式-方式1(静态变量方式)
public class Singleton {
    
    private Singleton(){
    }

    private static Singleton singleton = new Singleton();

    public static  Singleton getInstance(){
    
        return singleton;
    }
}

该方式在成员位置声明Singleton类型的静态变量,并创建Singleton类的对象instance。instance对象是随着类的加载而创建的。如果该对象足够大的话,而一直没有使用就会造成内存的浪费

  1. 饿汉式-方式2(静态代码块方式)
public class Singleton {
    
    private Singleton(){
    }

    private static Singleton singleton;

    static {
    
        singleton = new Singleton();
    }

    public static Singleton getInstance() {
    
        return singleton;
    }
}

该方式在成员位置声明Singleton类型的静态变量,而对象的创建是在静态代码块中,也是对着类的加载而创建。所以和饿汉式的方式1基本上一样,当然该方式也存在内存浪费问题。

懒汉式

  1. 懒汉式-方式1(线程不安全)
public class Singleton {
    
    private Singleton(){
    }

    private static Singleton singleton;

    public static Singleton getInstance() {
    
        if (singleton == null) {
    
            singleton = new Singleton();
        }
        return singleton;
    }
}

从上面代码我们可以看出该方式在成员位置声明Singleton类型的静态变量,并没有进行对象的赋值操作,那么什么时候赋值的呢?当调用getInstance()方法获取Singleton类的对象的时候才创建Singleton类的对象,这样就实现了懒加载的效果。但是,如果是多线程环境,会出现线程安全问题。

  1. 懒汉式-方式2(线程安全)

再来讨论一下懒汉模式中加锁的问题,对于 getInstance() 方法来说,绝大部分的操作都是读操作,读操作是线程安全的,所以我们没必让每个线程必须持有锁才能调用该方法,我们需要调整加锁的时机。由此也产生了一种新的实现模式:双重检查锁模式

public class Singleton {
    
    private Singleton() {
    }

    private static volatile Singleton instance;

    public static Singleton getInstance() {
    
        //第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实际
        if (instance == null) {
    
            synchronized (Singleton.class) {
    
                //抢到锁之后再次判断是否为空
                if (instance == null) {
    
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

双重检查锁模式是一种非常好的单例实现模式,解决了单例、性能、线程安全问题,上面的双重检测锁模式看上去完美无缺,其实是存在问题,在多线程的情况下,可能会出现空指针问题,出现问题的原因是JVM在实例化对象的时候会进行优化和指令重排序操作。
要解决双重检查锁模式带来空指针异常的问题,只需要使用 volatile关键字, volatile关键字可以保证可见性和有序性。
添加 volatile 关键字之后的双重检查锁模式是一种比较好的单例实现模式,能够保证在多线程的情况下线程安全也不会有性能问题。

  1. 懒汉式-方式4(静态内部类方式)

静态内部类单例模式中实例由内部类创建,由于 JVM 在加载外部类的过程中, 是不会加载静态内部类的, 只有内部类的属性/方法被调用时才会被加载, 并初始化其静态属性。静态属性由于被static 修饰,保证只被实例化一次,并且严格保证实例化顺序。

public class Singleton {
    
    private Singleton() {
    }

    private static class SingletonHolder {
    
        private static final Singleton INSTANCE = new Singleton();
    }

    public static Singleton getInstance() {
    
        return SingletonHolder.INSTANCE;
    }
}

第一次加载Singleton类时不会去初始化INSTANCE,只有第一次调用getInstance,虚拟机加载SingletonHolder
并初始化INSTANCE,这样不仅能确保线程安全,也能保证 Singleton 类的唯一性。
静态内部类单例模式是一种优秀的单例模式,是开源项目中比较常用的一种单例模式。在没有加任何锁的情况下,保证了多线程下的安全,并且没有任何性能影响和空间的浪费

  1. 枚举方式

枚举类实现单例模式是极力推荐的单例实现模式,因为枚举类型是线程安全的,并且只会装载一次,设计者充分的利用了枚举的这个特性来实现单例模式,枚举的写法非常简单,而且枚举类型是所用单例实现中唯一一种不会被破坏的单例实现模式。

/**
* 枚举方式
*/
public enum Singleton {
    
INSTANCE;
}

枚举方式属于恶汉式方式。

工厂模式

概述

需求:设计一个咖啡店点餐系统。
设计一个咖啡类(Coffee),并定义其两个子类(美式咖啡【AmericanCoffee】和拿铁咖啡
【LatteCoffee】);再设计一个咖啡店类(CoffeeStore),咖啡店具有点咖啡的功能。
具体类的设计如下:
在这里插入图片描述
在java中,万物皆对象,这些对象都需要创建,如果创建的时候直接new该对象,就会对该对象耦合严重,假如我们要更换对象,所有new对象的地方都需要修改一遍,这显然违背了软件设计的开闭原则。如果我们使用工厂来生产对象,我们就只和工厂打交道就可以了,彻底和对象解耦,如果要更换对象,直接在工厂里更换该对象即可,达到了与对象解耦的目的;所以说,工厂模式最大的优点就是:解耦。

简单工厂模式

在这里插入图片描述
工厂类代码如下:

public class SimpleCoffeeFactory {
    
    public Coffee createCoffee(String type) {
    
        Coffee coffee = null;
        if ("美式".equals(type)) {
    
            coffee = new AmericanCoffee();
        }else if ("拿铁".equals(type)) {
    
            coffee = new LatteCoffee();
        }else {
    
            throw new RuntimeException("还没有此类咖啡");
        }
        return coffee;
    }
}

工厂(factory)处理创建对象的细节,一旦有了SimpleCoffeeFactory,CoffeeStore类中的orderCoffee()就变成此对象的客户,后期如果需要Coffee对象直接从工厂中获取即可。这样也就解除了和Coffee实现类的耦合,同时又产生了新的耦合,CoffeeStore对象和SimpleCoffeeFactory工厂对象的耦合,工厂对象和商品对象的耦合。
后期如果再加新品种的咖啡,我们势必要需求修改SimpleCoffeeFactory的代码,违反了开闭原则。工厂类的客户端可能有很多,比如创建美团外卖等,这样只需要修改工厂类的代码,省去其他的修改操作。

优点: 封装了创建对象的过程,可以通过参数直接获取对象。把对象的创建和业务逻辑层分开,这样以后就避免了修改客户代码,如果要实现新产品直接修改工厂类,而不需要在原代码中修改,这样就降低了客户代码修改的可能性,更加容易扩展。
缺点: 增加新产品时还是需要修改工厂类的代码,违背了“开闭原则”。

  • 静态工厂

在开发中也有一部分人将工厂类中的创建对象的功能定义为静态的,这个就是静态工厂模式,它也不是23种设计模式中的。代码如下:

public class SimpleCoffeeFactory {
    
	public static Coffee createCoffee(String type) {
    
		Coffee coffee = null;
		if("americano".equals(type)) {
    
			coffee = new AmericanoCoffee();
		} else if("latte".equals(type)) {
    
			coffee = new LatteCoffee();
		}
		return coffe;
	}
}

工厂方法模式

针对上例中的缺点,使用工厂方法模式就可以完美的解决,完全遵循开闭原则。

  • 概念

定义一个用于创建对象的接口,让子类决定实例化哪个产品类对象。工厂方法使一个产品类的实例化延迟到其工厂的子类。

  • 结构

工厂方法模式的主要角色:

  • 抽象工厂(Abstract Factory):提供了创建产品的接口,调用者通过它访问具体工厂的工厂方法来创建产品。
  • 具体工厂(ConcreteFactory):主要是实现抽象工厂中的抽象方法,完成具体产品的创建。
  • 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能。
  • 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它同具体工厂之间一一对应。
  • 实现
    在这里插入图片描述
public interface CoffeeFactory {
    
	Coffee createCoffee();
}

public class LatteCoffeeFactory implements CoffeeFactory {
    
	public Coffee createCoffee() {
    
		return new LatteCoffee();
	}
}

public class AmericanCoffeeFactory implements CoffeeFactory {
    
	public Coffee createCoffee() {
    
		return new AmericanCoffee();
	}
}

public class CoffeeStore {
    
	private CoffeeFactory factory;
	public CoffeeStore(CoffeeFactory factory) {
    
		this.factory = factory;
	}
	public Coffee orderCoffee(String type) {
    
		Coffee coffee = factory.createCoffee();
		coffee.addMilk();
		coffee.addsugar();
		return coffee;
	}
}

从以上的编写的代码可以看到,要增加产品类时也要相应地增加工厂类,不需要修改工厂类的代码了,这样就解决了简单工厂模式的缺点
工厂方法模式是简单工厂模式的进一步抽象。由于使用了多态性,工厂方法模式保持了简单工厂模式的优点,而且克服了它的缺点。

  • 优缺点

优点

  • 用户只需要知道具体工厂的名称就可得到所要的产品,无须知道产品的具体创建过程
  • 在系统增加新的产品时只需要添加具体产品类和对应的具体工厂类,无须对原工厂进行任何修改,满足开闭原则;

缺点:

  • 每增加一个产品就要增加一个具体产品类和一个对应的具体工厂类,这增加了系统的复杂度。

抽象工厂模式

前面介绍的工厂方法模式中考虑的是一类产品的生产,如畜牧场只养动物、电视机厂只生产电视机、传智播客只培养计算机软件专业的学生等。
这些工厂只生产同种类产品,同种类产品称为同等级产品,也就是说:工厂方法模式只考虑生产同等级的产品,但是在现实生活中许多工厂是综合型的工厂,能生产多等级(种类) 的产品,如电器厂既生产电视机又生产洗衣机或空调,大学既有软件专业又有生物专业等。
本节要介绍的抽象工厂模式将考虑多等级产品的生产,将同一个具体工厂所生产的位于不同等级的一组产品称为一个产品族,下图所示横轴是产品等级,也就是同一类产品;纵轴是产品族,也就是同一品牌的产品,同一品牌的产品产自同一个工厂。
在这里插入图片描述
在这里插入图片描述

  • 概念

是一种为访问类提供一个创建一组相关或相互依赖对象的接口,且访问类无须指定所要产品的具体类就能得到同族的不同等级的产品的模式结构。
抽象工厂模式是工厂方法模式的升级版本,工厂方法模式只生产一个等级的产品,而抽象工厂模式可生产多个等级的产品。

  • 结构

抽象工厂模式的主要角色如下:

  • 抽象工厂(Abstract Factory):提供了创建产品的接口,它包含多个创建产品的方法,可以创建多个不同等级的产品。
  • 具体工厂(Concrete Factory):主要是实现抽象工厂中的多个抽象方法,完成具体产品的创建。
  • 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能,抽象工厂模式有多个抽象产品。
  • 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它同具体工厂之间是多对一的关系。
  • 实现

现咖啡店业务发生改变,不仅要生产咖啡还要生产甜点,如提拉米苏、抹茶慕斯等,要是按照工厂方法模式,需要定义提拉米苏类、抹茶慕斯类、提拉米苏工厂、抹茶慕斯工厂、甜点工厂类,很容易发生类爆炸情况。其中拿铁咖啡、美式咖啡是一个产品等级,都是咖啡;提拉米苏、抹茶慕斯也是一个产品等级;拿铁咖啡和提拉米苏是同一产品族(也就是都属于意大利风味),美式咖啡和抹茶慕斯是同一产品族(也就是都属于美式风味)。所以这个案例可以使用抽象工厂模式实现。类图如下:
在这里插入图片描述

代码如下:
抽象工厂:

public interface DessertFactory {
    
	Coffee createCoffee();
	Dessert createDessert();
}

具体工厂:

//美式甜点工厂
public class AmericanDessertFactory implements DessertFactory {
    
	public Coffee createCoffee() {
    
		return new AmericanCoffee();
	}
	public Dessert createDessert() {
    
		return new MatchaMousse();
	}
}
//意大利风味甜点工厂
public class ItalyDessertFactory implements DessertFactory {
    
	public Coffee createCoffee() {
    
		return new LatteCoffee();
	}
	public Dessert createDessert() {
    
		return new Tiramisu();
	}
}

如果要加同一个产品族的话,只需要再加一个对应的工厂类即可,不需要修改其他的类。

  • 优缺点

优点:

  • 当一个产品族中的多个对象被设计成一起工作时,它能保证客户端始终只使用同一个产品族中的对象。

缺点:

  • 当产品族中需要增加一个新的产品时,所有的工厂类都需要进行修改。
  • 使用场景
  • 当需要创建的对象是一系列相互关联或相互依赖的产品族时,如电器工厂中的电视机、洗衣机、空调等。
  • 系统中有多个产品族,但每次只使用其中的某一族产品。如有人只喜欢穿某一个品牌的衣服和鞋。
  • 系统中提供了产品的类库,且所有产品的接口相同,客户端不依赖产品实例的创建细节和内部结构

如:输入法换皮肤,一整套一起换。生成不同操作系统的程序。

原型模式

  • 概述

用一个已经创建的实例作为原型,通过复制该原型对象来创建一个和原型对象相同的新对象

  • 结构

原型模式包含如下角色:

  • 抽象原型类:规定了具体原型对象必须实现的的 clone() 方法。
  • 具体原型类:实现抽象原型类的 clone() 方法,它是可被复制的对象。
  • 访问类:使用具体原型类中的 clone() 方法来复制新的对象。

接口类图如下:
在这里插入图片描述

  • 实现

原型模式的克隆分为浅克隆和深克隆。

  • 浅克隆:创建一个新对象,新对象的属性和原来对象完全相同,对于非基本类型属性,仍指向原
    有属性所指向的对象的内存地址。
  • 深克隆:创建一个新对象,属性中引用的其他对象也会被克隆,不再指向原有对象地址。
    Java中的Object类中提供了 clone() 方法来实现浅克隆。 Cloneable 接口是上面的类图中的抽
    象原型类,而实现了Cloneable接口的子实现类就是具体的原型类。代码如下:

Realizetype(具体的原型类):

public class Realizetype implements Cloneable {
    
	public Realizetype() {
    
		System.out.println("具体的原型对象创建完成!");
	}
	@Override
	protected Realizetype clone() throws CloneNotSupportedException {
    
		System.out.println("具体原型复制成功!");
		return (Realizetype) super.clone();
	}
}

PrototypeTest(测试访问类):

public class PrototypeTest {
    
	public static void main(String[] args) throws CloneNotSupportedException{
    
		Realizetype r1 = new Realizetype();
		Realizetype r2 = r1.clone();
		System.out.println("对象r1和r2是同一个对象?" + (r1 == r2));
	}
}
  • 案例

用原型模式生成“三好学生”奖状
同一学校的“三好学生”奖状除了获奖人姓名不同,其他都相同,可以使用原型模式复制多个“三好学生”奖状出来,然后在修改奖状上的名字即可。
类图如下:
在这里插入图片描述

代码如下:

//奖状类
public class Citation implements Cloneable {
    
	private String name;
	public void setName(String name) {
    
		this.name = name;
	}
	public String getName() {
    
		return (this.name);
	}
	public void show() {
    
		System.out.println(name + "同学:在2020学年第一学期中表现优秀,被评为三好学生。特发此状!");
	}
	@Override
	public Citation clone() throws CloneNotSupportedException {
    
		return (Citation) super.clone();
	}
}
//测试访问类
public class CitationTest {
    
	public static void main(String[] args) throwsCloneNotSupportedException {
    
		Citation c1 = new Citation();
		c1.setName("张三");
		//复制奖状
		Citation c2 = c1.clone();
		//将奖状的名字修改李四
		c2.setName("李四");
		c1.show();
		c2.show();
	}
}
  • 使用场景
  • 对象的创建非常复杂,可以使用原型模式快捷的创建对象。
  • 性能和安全要求比较高。
  • 扩展(深克隆)
    将上面的“三好学生”奖状的案例中Citation类的name属性修改为Student类型的属性。代码如下:
//奖状类
public class Citation implements Cloneable {
    
	private Student stu;
	public Student getStu() {
    
		return stu;
	}
	public void setStu(Student stu) {
    
		this.stu = stu;
	}
	void show() {
    
		System.out.println(stu.getName() + "同学:在2020学年第一学期中表现优秀,被评为三好学生。特发此状!");
	}
	@Override
	public Citation clone() throws CloneNotSupportedException {
    
		return (Citation) super.clone();
	}
}
//学生类
public class Student {
    
	private String name;
	private String address;
	public Student(String name, String address) {
    
		this.name = name;
		this.address = address;
	}
	public Student() {
    
	}
	public String getName() {
    
		return name;
	}
	public void setName(String name) {
    
		this.name = name;
	}
	public String getAddress() {
    
		return address;
	}
	public void setAddress(String address) {
    
		this.address = address;
	}
}
//测试类
public class CitationTest {
    
	public static void main(String[] args) throwsCloneNotSupportedException {
    
	Citation c1 = new Citation();
	Student stu = new Student("张三", "西安");
	c1.setStu(stu);
	//复制奖状
	Citation c2 = c1.clone();
	//获取c2奖状所属学生对象
	Student stu1 = c2.getStu();
	stu1.setName("李四");
	//判断stu对象和stu1对象是否是同一个对象
	System.out.println("stu和stu1是同一个对象?" + (stu == stu1));
	c1.show();
	c2.show();
	}
}

运行结果为:
在这里插入图片描述
说明:

stu对象和stu1对象是同一个对象,就会产生将stu1对象中name属性值改为“李四”,两个Citation(奖状)对象中显示的都是李四。这就是浅克隆的效果,对具体原型类(Citation)中的引用类型的属性进行引用的复制。这种情况需要使用深克隆,而进行深克隆需要使用对象流。代码如下

public class CitationTest1 {
    
	public static void main(String[] args) throws Exception {
    
		Citation c1 = new Citation();
		Student stu = new Student("张三", "西安");
		c1.setStu(stu);
		//创建对象输出流对象
		ObjectOutputStream oos = new ObjectOutputStream(new
		FileOutputStream("C:\\Users\\Think\\Desktop\\b.txt"));
		//将c1对象写出到文件中
		oos.writeObject(c1);
		oos.close();
		//创建对象出入流对象
		ObjectInputStream ois = new ObjectInputStream(new
		FileInputStream("C:\\Users\\Think\\Desktop\\b.txt"));
		//读取对象
		Citation c2 = (Citation) ois.readObject();
		//获取c2奖状所属学生对象
		Student stu1 = c2.getStu();
		stu1.setName("李四");
		//判断stu对象和stu1对象是否是同一个对象
		System.out.println("stu和stu1是同一个对象?" + (stu == stu1));
		c1.show();
		c2.show();
	}
}

运行结果为:
在这里插入图片描述

注意:Citation类和Student类必须实现Serializable接口,否则会抛NotSerializableException异常。

建造者模式

概述

将一个复杂对象的构建与表示分离,使得同样的构建过程可以创建不同的表示。
在这里插入图片描述

  • 分离了部件的构造(由Builder来负责)和装配(由Director负责)。 从而可以构造出复杂的对象。这个模式适用于:某个对象的构建过程复杂的情况。
  • 由于实现了构建和装配的解耦。不同的构建器,相同的装配,也可以做出不同的对象;相同的构建器,不同的装配顺序也可以做出不同的对象。也就是实现了构建算法、装配算法的解耦,实现了更好的复用。
  • 建造者模式可以将部件和其组装过程分开,一步一步创建一个复杂的对象。用户只需要指定复杂对象的类型就可以得到该对象,而无须知道其内部的具体构造细节。

结构

建造者(Builder)模式包含如下角色:

  • 抽象建造者类(Builder):这个接口规定要实现复杂对象的那些部分的创建,并不涉及具体的部件对象的创建。
  • 具体建造者类(ConcreteBuilder):实现 Builder 接口,完成复杂产品的各个部件的具体创建方法。在构造过程完成后,提供产品的实例。
  • 产品类(Product):要创建的复杂对象。
  • 指挥者类(Director):调用具体建造者来创建复杂对象的各个部分,在指导者中不涉及具体产品的信息,只负责保证对象各部分完整创建或按某种顺序创建。
    类图如下:

在这里插入图片描述

实例

创建共享单车
生产自行车是一个复杂的过程,它包含了车架,车座等组件的生产。而车架又有碳纤维,铝合金等材质的,车座有橡胶,真皮等材质。对于自行车的生产就可以使用建造者模式。
这里Bike是产品,包含车架,车座等组件;Builder是抽象建造者,MobikeBuilder和OfoBuilder是具体的建造者;Director是指挥者。类图如下:

在这里插入图片描述
具体的代码如下:

//自行车类
public class Bike {
    
	private String frame;
	private String seat;
	public String getFrame() {
    
		return frame;
	}
	public void setFrame(String frame) {
    
		this.frame = frame;
	}
	public String getSeat() {
    
		return seat;
	}
	public void setSeat(String seat) {
    
		this.seat = seat;
	}
}

// 抽象 builder 类
public abstract class Builder {
    
	protected Bike mBike = new Bike();
	public abstract void buildFrame();
	public abstract void buildSeat();
	public abstract Bike createBike();
}

//摩拜单车Builder类
public class MobikeBuilder extends Builder {
    
	@Override
	public void buildFrame() {
    
		mBike.setFrame("铝合金车架");
	}
	@Override
	public void buildSeat() {
    
		mBike.setSeat("真皮车座");
	}
	@Override
	public Bike createBike() {
    
		return mBike;
	}
}

//ofo单车Builder类
public class OfoBuilder extends Builder {
    
	@Override
	public void buildFrame() {
    
		mBike.setFrame("碳纤维车架");
	}
	@Override
	public void buildSeat() {
    
		mBike.setSeat("橡胶车座");
	}
	@Override
	public Bike createBike() {
    
		return mBike;
	}
}

//指挥者类
public class Director {
    
	private Builder mBuilder;
	public Director(Builder builder) {
    
		mBuilder = builder;
	}
	public Bike construct() {
    
		mBuilder.buildFrame();
		mBuilder.buildSeat();
		return mBuilder.createBike();
	}
}

//测试类
public class Client {
    
	public static void main(String[] args) {
    
		showBike(new OfoBuilder());
		showBike(new MobikeBuilder());
	}
	private static void showBike(Builder builder) {
    
		Director director = new Director(builder);
		Bike bike = director.construct();
		System.out.println(bike.getFrame());
		System.out.println(bike.getSeat());
	}
}

注意
上面示例是 Builder模式的常规用法,指挥者类 Director 在建造者模式中具有很重要的作用,它用于指导具体构建者如何构建产品,控制调用先后次序,并向调用者返回完整的产品类,但是有些情况下需要简化系统结构,可以把指挥者类和抽象建造者进行结合

// 抽象 builder 类
public abstract class Builder {
    
	protected Bike mBike = new Bike();
	public abstract void buildFrame();
	public abstract void buildSeat();
	public abstract Bike createBike();
	public Bike construct() {
    
		this.buildFrame();
		this.BuildSeat();
		return this.createBike();
	}
}

说明:这样做确实简化了系统结构,但同时也加重了抽象建造者类的职责,也不是太符合单一职责原则,如果construct() 过于复杂,建议还是封装到 Director 中。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_67154380/article/details/134274836

智能推荐

PCL_Tutorial2-1.7-点云保存PNG_pcl::io:savepng-程序员宅基地

文章浏览阅读4.4k次。1.7-savingPNG介绍代码详情函数详解savePNGFile()源码savePNGFile()源码提示savePNGFile()推荐用法处理结果代码链接介绍PCL提供了将点云的值保存到PNG图像文件的可能性。这只能用有有序的云来完成,因为结果图像的行和列将与云中的行和列完全对应。例如,如果您从类似Kinect或Xtion的传感器中获取了点云,则可以使用它来检索与该云匹配的640x480 RGB图像。代码详情#include <pcl / io / pcd_io.h>#incl_pcl::io:savepng

知乎问答:程序员在咖啡店编程,喝什么咖啡容易吸引妹纸?-程序员宅基地

文章浏览阅读936次。吸引妹子的关键点不在于喝什么咖啡,主要在于竖立哪种男性人设。能把人设在几分钟内快速固定下来,也就不愁吸引对口的妹子了。我有几个备选方案,仅供参考。1. 运动型男生左手单手俯卧撑,右手在键盘上敲代码。你雄壮的腰腹肌肉群活灵活现,简直就是移动的春药。2.幽默男生花 20 块找一个托(最好是老同学 or 同事)坐你对面。每当你侃侃而谈,他便满面涨红、放声大笑、不能自已。他笑的越弱_咖啡厅写代码

【笔试面试】腾讯WXG 面委会面复盘总结 --一次深刻的教训_腾讯面委会面试是什么-程序员宅基地

文章浏览阅读1.2w次,点赞5次,收藏5次。今天 (应该是昨天了,昨晚太晚了没发出去)下午参加了腾讯WXG的面委会面试。前面在牛客上搜索了面委会相关的面经普遍反映面委会较难,因为都是微信的核心大佬,问的问题也会比较深。昨晚还蛮紧张的,晚上都没睡好。面试使用的是腾讯会议,时间到了面试官准时进入会议。照例是简单的自我介绍,然后是几个常见的基础问题:例如数据库索引,什么时候索引会失效、设计模式等。这部分比较普通,问的也不是很多,不再赘述。现在回想下,大部分还是简历上写的技能点。接下来面试官让打开项目的代码,对着代码讲解思路。我笔记本上没有这部分代码,所_腾讯面委会面试是什么

AI绘画自动生成器:艺术创作的新浪潮-程序员宅基地

文章浏览阅读382次,点赞3次,收藏4次。AI绘画自动生成器是一种利用人工智能技术,特别是深度学习算法,来自动创建视觉艺术作品的软件工具。这些工具通常基于神经网络模型,如生成对抗网络(GANs),通过学习大量的图像数据来生成新的图像。AI绘画自动生成器作为艺术与科技结合的产物,正在开启艺术创作的新篇章。它们不仅为艺术家和设计师提供了新的工具,也为普通用户提供了探索艺术的机会。随着技术的不断进步,我们可以预见,AI绘画自动生成器将在未来的创意产业中发挥越来越重要的作用。

获取list集合中重复的元素_list找到重复的元素-程序员宅基地

文章浏览阅读1.6w次,点赞3次,收藏13次。老规矩,二话不说直接上代码:package com.poinne17.test;import org.apache.commons.collections.CollectionUtils;import org.junit.Test;import java.util.*;/** * @author:Pionner17 * @date: 2017/9/3 22:41 * @em_list找到重复的元素

系统运维—1.0 解压缩_winzip收费-程序员宅基地

文章浏览阅读1k次。一、zip和unzip  一般情况下,windows中的压缩包都是rar或者zip格式,对应的压缩软件为winzip和winrar。winzip是免费的,winrar是收费的。rar比zip压缩率更高,即同样的文件压缩完后体积更小,同时因为国内盗版,以及winrar安装后,右击默认压缩为rar的原因,导致国内的rar的使用率远超zip。  放眼全世界,zip的使用率反而远超rar,在ubuntu中,zip是默认安装的,免费使用,而rar需要额外安装,并且收费。故在linux中一般情况下,我们使用zip格_winzip收费

随便推点

Flutter ListView ListView.build ListView.separated_flutter listview.separated和listview.builder-程序员宅基地

文章浏览阅读1.7k次。理解为ListView 的三种形式吧ListView 默认构造但是这种方式创建的列表存在一个问题:对于那些长列表或者需要较昂贵渲染开销的子组件,即使还没有出现在屏幕中但仍然会被ListView所创建,这将是一项较大的开销,使用不当可能引起性能问题甚至卡顿直接返回的是每一行的Widget,相当于ios的row。行高按Widget(cell)高设置ListView.build 就和io..._flutter listview.separated和listview.builder

2021 最新前端面试题及答案-程序员宅基地

文章浏览阅读1.4k次,点赞4次,收藏14次。废话不多说直接上干货1.js运行机制JavaScript单线程,任务需要排队执行同步任务进入主线程排队,异步任务进入事件队列排队等待被推入主线程执行定时器的延迟时间为0并不是立刻执行,只是代表相比于其他定时器更早的被执行以宏任务和微任务进一步理解js执行机制整段代码作为宏任务开始执行,执行过程中宏任务和微任务进入相应的队列中整段代码执行结束,看微任务队列中是否有任务等待执行,如果有则执行所有的微任务,直到微任务队列中的任务执行完毕,如果没有则继续执行新的宏任务执行新的宏任务,凡是在..._前端面试

linux基本概述-程序员宅基地

文章浏览阅读1k次。(3)若没有查到,则将请求发给根域DNS服务器,并依序从根域查找顶级域,由顶级查找二级域,二级域查找三级,直至找到要解析的地址或名字,即向客户机所在网络的DNS服务器发出应答信息,DNS服务器收到应答后现在缓存中存储,然后,将解析结果发给客户机。(3)若没有查到,则将请求发给根域DNS服务器,并依序从根域查找顶级域,由顶级查找二级域,二级域查找三级,直至找到要解析的地址或名字,即向客户机所在网络的DNS服务器发出应答信息,DNS服务器收到应答后现在缓存中存储,然后,将解析结果发给客户机。_linux

JavaScript学习手册十三:HTML DOM——文档元素的操作(一)_javascript学习手册十三:html dom——文档元素的操作(一)-程序员宅基地

文章浏览阅读7.9k次,点赞26次,收藏66次。HTML DOM——文档元素的操作1、通过id获取文档元素任务描述相关知识什么是DOM文档元素节点树通过id获取文档元素代码文件2、通过类名获取文档元素任务描述相关知识通过类名获取文档元素代码文件3、通过标签名获取文档元素任务描述相关知识通过标签名获取文档元素获取标签内部的子元素代码文件4、html5中获取元素的方法一任务描述相关知识css选择器querySelector的用法代码文件5、html5中获取元素的方法二任务描述相关知识querySelectorAll的用法代码文件6、节点树上的操作任务描述相关_javascript学习手册十三:html dom——文档元素的操作(一)

《LeetCode刷题》172. 阶乘后的零(java篇)_java 给定一个整数n,返回n!结果尾数中零的数量-程序员宅基地

文章浏览阅读132次。《LeetCode学习》172. 阶乘后的零(java篇)_java 给定一个整数n,返回n!结果尾数中零的数量

php 公众号消息提醒,如何开启公众号消息提醒功能-程序员宅基地

文章浏览阅读426次。请注意,本文将要给大家分享的并不是开启公众号的安全操作风险提醒,而是当公众号粉丝给公众号发消息的时候,公众号的管理员和运营者如何能在手机上立即收到消息通知,以及在手机上回复粉丝消息。第一步:授权1、在微信中点击右上角+,然后选择“添加朋友”,然后选择“公众号”,然后输入“微小助”并关注该公众号。2、进入微小助公众号,然后点击底部菜单【新增授权】,如下图所示:3、然后会打开一个温馨提示页面。请一定要..._php微信公众号服务提示

推荐文章

热门文章

相关标签