转 Android SurfaceFlinger中的SharedClient -- 客户端(Surface)和服务端(Layer)之间的显示缓冲区管_android getpagestacksize()-程序员宅基地

技术标签: java  android system  android  buffer  layer  structure  token  

SurfaceFlinger在系统启动阶段作为系统服务被加载。应用程序中的每个窗口,对应本地代码中的Surface,而Surface又对应于 SurfaceFlinger中的各个Layer,SurfaceFlinger的主要作用是为这些Layer申请内存,根据应用程序的请求管理这些 Layer显示、隐藏、重画等操作,最终由SurfaceFlinger把所有的Layer组合到一起,显示到显示器上。当一个应用程序需要在一个 Surface上进行画图操作时,首先要拿到这个Surface在内存中的起始地址,而这块内存是在SurfaceFlinger中分配的,因为 SurfaceFlinger和应用程序并不是运行在同一个进程中,如何在应用客户端(Surface)和服务端(SurfaceFlinger - Layer)之间传递和同步显示缓冲区?这正是本文要讨论的内容。

Surface的创建过程
我们先看看Android如何创建一个Surface,下面的序列图展示了整个创建过程。

 

Android SurfaceFlinger中的SharedClient -- 客户端(Surface)和服务端(Layer)之间的显示缓冲区管 - 大森林 - 我的小书房


                                                             图一   Surface的创建过程

创建Surface的过程基本上分为两步:

1. 建立SurfaceSession

第一步通常只执行一次,目的是创建一个SurfaceComposerClient的实例,JAVA层通过JNI调用本地代码,本地代码创建一个 SurfaceComposerClient的实例,SurfaceComposerClient通过ISurfaceComposer接口调用 SurfaceFlinger的createConnection,SurfaceFlinger返回一个ISurfaceFlingerClient接口给SurfaceComposerClient,在createConnection的过程中,SurfaceFlinger创建了用于管理缓冲区切换的SharedClient,关于SharedClient我们下面再介绍,最后,本地层把SurfaceComposerClient的实例返回给 JAVA层,完成SurfaceSession的建立。

2. 利用SurfaceSession创建Surface

JAVA层通过JNI调用本地代码Surface_Init(),本地代码首先取得第一步创建的SurfaceComposerClient实例,通过SurfaceComposerClient,调用ISurfaceFlingerClient接口的createSurface方法,进入 SurfaceFlinger,SurfaceFlinger根据参数,创建不同类型的Layer,然后调用Layer的setBuffers()方法,为该Layer创建了两个缓冲区,然后返回该Layer的ISurface接口,SurfaceComposerClient使用这个ISurface接口创建一个SurfaceControl实例,并把这个SurfaceControl返回给JAVA层。

由此得到以下结果:

JAVA层的Surface实际上对应于本地层的SurfaceControl对象,以后本地代码可以使用JAVA传入的SurfaceControl对象,通过SurfaceControl的getSurface方法,获得本地Surface对象;
Android为每个Surface分配了两个图形缓冲区,以便实现Page-Flip的动作;
建立SurfaceSession时,SurfaceFlinger创建了用于管理两个图形缓冲区切换的SharedClient对象,SurfaceComposerClient可以通过ISurfaceFlingerClient接口的getControlBlock()方法获得这个SharedClient对象,查看SurfaceComposerClient的成员函数_init:
view plaincopy to clipboardprint?
void SurfaceComposerClient::_init(  
        const sp<ISurfaceComposer>& sm, const sp<ISurfaceFlingerClient>& conn)  
{  
    ......  
    mClient = conn;  
    if (mClient == 0) {  
        mStatus = NO_INIT;  
        return;  
    }  

    mControlMemory = mClient->getControlBlock();  
    mSignalServer = sm;  
    mControl = static_cast<SharedClient *>(mControlMemory->getBase());  
}
void SurfaceComposerClient::_init(
        const sp<ISurfaceComposer>& sm, const sp<ISurfaceFlingerClient>& conn)
{
    ......
    mClient = conn;
    if (mClient == 0) {
        mStatus = NO_INIT;
        return;
    }

    mControlMemory = mClient->getControlBlock();
    mSignalServer = sm;
    mControl = static_cast<SharedClient *>(mControlMemory->getBase());
}

获得Surface对应的显示缓冲区
虽然在SurfaceFlinger在创建Layer时已经为每个Layer申请了两个缓冲区,但是此时在JAVA层并看不到这两个缓冲区,JAVA层要想在Surface上进行画图操作,必须要先把其中的一个缓冲区绑定到Canvas中,然后所有对该Canvas的画图操作最后都会画到该缓冲区内。下图展现了绑定缓冲区的过程:

 

   Android SurfaceFlinger中的SharedClient -- 客户端(Surface)和服务端(Layer)之间的显示缓冲区管 - 大森林 - 我的小书房
                                                                         图二 绑定缓冲区的过程

    开始在Surface画图前,Surface.java会先调用lockCanvas()来得到要进行画图操作的Canvas,lockCanvas会进一步调用本地层的Surface_lockCanvas,本地代码利用JAVA层传入的SurfaceControl对象,通过getSurface() 取得本地层的Surface对象,接着调用该Surface对象的lock()方法,lock()返回了改Surface的信息,其中包括了可用缓冲区的首地址vaddr,该vaddr在Android的2D图形库Skia中,创建了一个bitmap,然后通过Skia库中Canvas的 API:Canvas.setBitmapDevice(bitmap),把该bitmap绑定到Canvas中,最后把这个Canvas返回给JAVA 层,这样JAVA层就可以在该Canvas上进行画图操作,而这些画图操作最终都会画在以vaddr为首地址的缓冲区中。

    再看看在Surface的lock()方法中做了什么:

dequeueBuffer(&backBuffer)获取backBuffer
SharedBufferClient->dequeue()获得当前空闲缓冲区的编号
通过缓冲区编号获得真正的GraphicBuffer:backBuffer
如果还没有对Layer中的buffer进行映射(Mapper),getBufferLocked通过ISurface接口重新重新映射
获取frontBuffer
根据两个Buffer的更新区域,把frontBuffer的内容拷贝到backBuffer中,这样保证了两个Buffer中显示内容的同步
backBuffer->lock() 获得backBuffer缓冲区的首地址vaddr
通过info参数返回vaddr


释放Surface对应的显示缓冲区
画图完成后,要想把Surface的内容显示到屏幕上,需要把Canvas中绑定的缓冲区释放,并且把该缓冲区从变成可投递(因为默认只有两个buffer,所以实际上就是变成了frontBuffer),SurfaceFlinger的工作线程会在适当的刷新时刻,把系统中所有的frontBuffer混合在一起,然后通过OpenGL刷新到屏幕上。下图展现了解除绑定缓冲区的过程:

 

Android SurfaceFlinger中的SharedClient -- 客户端(Surface)和服务端(Layer)之间的显示缓冲区管 - 大森林 - 我的小书房
                                                               图三 解除绑定缓冲区的过程

JAVA层调用unlockCanvasAndPost
进入本地代码:Surface_unlockCanvasAndPost
本地代码利用JAVA层传入的SurfaceControl对象,通过getSurface()取得本地层的Surface对象
绑定一个空的bitmap到Canvas中
调用Surface的unlockAndPost方法
调用GraphicBuffer的unlock(),解锁缓冲区
在queueBuffer()调用了SharedBufferClient的queue(),把该缓冲区更新为可投递状态

SharedClient 和 SharedBufferStack
从前面的讨论可以看到,Canvas绑定缓冲区时,要通过SharedBufferClient的dequeue方法取得空闲的缓冲区,而解除绑定并提交缓冲区投递时,最后也要调用SharedBufferClient的queue方法通知SurfaceFlinger的工作线程。实际上,在SurfaceFlinger里,每个Layer也会关联一个SharedBufferServer,SurfaceFlinger 的工作线程通过SharedBufferServer管理着Layer的缓冲区,在SurfaceComposerClient建立连接的阶段,SurfaceFlinger就已经为该连接创建了一个SharedClient 对象,SharedClient 对象中包含了一个SharedBufferStack数组,数组的大小是31,每当创建一个Surface,就会占用数组中的一个 SharedBufferStack,然后SurfaceComposerClient端的Surface会创建一个 SharedBufferClient和该SharedBufferStack关联,而SurfaceFlinger端的Layer也会创建 SharedBufferServer和SharedBufferStack关联,实际上每对 SharedBufferClient/SharedBufferServer是控制着同一个SharedBufferStack对象,通过 SharedBufferStack,保证了负责对Surface的画图操作的应用端和负责刷新屏幕的服务端(SurfaceFlinger)可以使用不同的缓冲区,并且让他们之间知道对方何时锁定/释放缓冲区。

SharedClient和SharedBufferStack的代码和头文件分别位于:

/frameworks/base/libs/surfaceflinger_client/SharedBufferStack.cpp

/frameworks/base/include/private/surfaceflinger/SharedBufferStack.h

 

Android SurfaceFlinger中的SharedClient -- 客户端(Surface)和服务端(Layer)之间的显示缓冲区管 - 大森林 - 我的小书房
                                                                       图四    客户端和服务端缓冲区管理

     继续研究SharedClient、SharedBufferStack、SharedBufferClient、SharedBufferServer的诞生过程。

    1. SharedClient
    在createConnection阶段,SurfaceFlinger创建Client对象:
view plaincopy to clipboardprint?
sp<ISurfaceFlingerClient> SurfaceFlinger::createConnection()  
{  
    Mutex::Autolock _l(mStateLock);  
    uint32_t token = mTokens.acquire();  

    sp<Client> client = new Client(token, this);  
    if (client->ctrlblk == 0) {  
        mTokens.release(token);  
        return 0;  
    }  
    status_t err = mClientsMap.add(token, client);  
    if (err < 0) {  
        mTokens.release(token);  
        return 0;  
    }  
    sp<BClient> bclient =  
        new BClient(this, token, client->getControlBlockMemory());  
    return bclient;  
}
sp<ISurfaceFlingerClient> SurfaceFlinger::createConnection()
{
    Mutex::Autolock _l(mStateLock);
    uint32_t token = mTokens.acquire();

    sp<Client> client = new Client(token, this);
    if (client->ctrlblk == 0) {
        mTokens.release(token);
        return 0;
    }
    status_t err = mClientsMap.add(token, client);
    if (err < 0) {
        mTokens.release(token);
        return 0;
    }
    sp<BClient> bclient =
        new BClient(this, token, client->getControlBlockMemory());
    return bclient;
}

再进入Client的构造函数中,它分配了4K大小的共享内存,并在这块内存上构建了SharedClient对象:
view plaincopy to clipboardprint?
Client::Client(ClientID clientID, const sp<SurfaceFlinger>& flinger)  
    : ctrlblk(0), cid(clientID), mPid(0), mBitmap(0), mFlinger(flinger)  
{  
    const int pgsize = getpagesize();  
    const int cblksize = ((sizeof(SharedClient)+(pgsize-1))&~(pgsize-1));  

    mCblkHeap = new MemoryHeapBase(cblksize, 0,  
            "SurfaceFlinger Client control-block");  

    ctrlblk = static_cast<SharedClient *>(mCblkHeap->getBase());  
    if (ctrlblk) { // construct the shared structure in-place.  
        new(ctrlblk) SharedClient;  
    }  
}
Client::Client(ClientID clientID, const sp<SurfaceFlinger>& flinger)
    : ctrlblk(0), cid(clientID), mPid(0), mBitmap(0), mFlinger(flinger)
{
    const int pgsize = getpagesize();
    const int cblksize = ((sizeof(SharedClient)+(pgsize-1))&~(pgsize-1));

    mCblkHeap = new MemoryHeapBase(cblksize, 0,
            "SurfaceFlinger Client control-block");

    ctrlblk = static_cast<SharedClient *>(mCblkHeap->getBase());
    if (ctrlblk) { // construct the shared structure in-place.
        new(ctrlblk) SharedClient;
    }
}

回到createConnection中,通过Client的getControlBlockMemory()方法获得共享内存块的 IMemoryHeap接口,接着创建ISurfaceFlingerClient的子类BClient,BClient的成员变量mCblk保存了 IMemoryHeap接口指针;
把BClient返回给SurfaceComposerClient,SurfaceComposerClient通过 ISurfaceFlingerClient接口的getControlBlock()方法获得IMemoryHeap接口指针,同时保存在 SurfaceComposerClient的成员变量mControlMemory中;
继续通过IMemoryHeap接口的getBase ()方法获取共享内存的首地址,转换为SharedClient指针后保存在SurfaceComposerClient的成员变量mControl中;
至此,SurfaceComposerClient的成员变量mControl和SurfaceFlinger::Client.ctrlblk指向了同一个内存块,该内存块上就是SharedClient对象。
    2. SharedBufferStack、SharedBufferServer、SharedBufferClient
    SharedClient对象中有一个SharedBufferStack数组:

    SharedBufferStack surfaces[ NUM_LAYERS_MAX ];

    NUM_LAYERS_MAX 被定义为31,这样保证了SharedClient对象的大小正好满足4KB的要求。创建一个新的Surface时,进入SurfaceFlinger的 createSurface函数后,先取在createConnection阶段创建的Client对象,通过Client在 0--NUM_LAYERS_MAX 之间取得一个尚未被使用的编号,这个编号实际上就是SharedBufferStack数组的索引:

view plaincopy to clipboardprint?
int32_t id = client->generateId(pid);
int32_t id = client->generateId(pid);

然后以Client对象和索引值以及其他参数,创建不同类型的Layer对象,一普通的Layer对象为例:

view plaincopy to clipboardprint?
layer = createNormalSurfaceLocked(client, d, id,  
                        w, h, flags, format);
layer = createNormalSurfaceLocked(client, d, id,
                        w, h, flags, format);

在createNormalSurfaceLocked中创建Layer对象:

view plaincopy to clipboardprint?
sp<Layer> layer = new Layer(this, display, client, id);
sp<Layer> layer = new Layer(this, display, client, id);

构造Layer时会先构造的父类LayerBaseClient,LayerBaseClient中创建了SharedBufferServer对象,SharedBufferStack 数组的索引值和SharedClient被传入SharedBufferServer对象中。

view plaincopy to clipboardprint?
LayerBaseClient::LayerBaseClient(SurfaceFlinger* flinger, DisplayID display,  
        const sp<Client>& client, int32_t i)  
    : LayerBase(flinger, display), lcblk(NULL), client(client), mIndex(i),  
      mIdentity(uint32_t(android_atomic_inc(&sIdentity)))  
{  
    lcblk = new SharedBufferServer(  
            client->ctrlblk, i, NUM_BUFFERS,  
            mIdentity);  
}
LayerBaseClient::LayerBaseClient(SurfaceFlinger* flinger, DisplayID display,
        const sp<Client>& client, int32_t i)
    : LayerBase(flinger, display), lcblk(NULL), client(client), mIndex(i),
      mIdentity(uint32_t(android_atomic_inc(&sIdentity)))
{
    lcblk = new SharedBufferServer(
            client->ctrlblk, i, NUM_BUFFERS,
            mIdentity);
}

    自此,Layer通过lcblk成员变量(SharedBufferServer)和SharedClient共享内存区建立了关联,并且每个Layer对应于SharedBufferStack 数组中的一项。

    回到SurfaceFlinger的客户端Surface.cpp中,Surface的构造函数如下:

view plaincopy to clipboardprint?
Surface::Surface(const sp<SurfaceControl>& surface)  
    : mClient(surface->mClient), mSurface(surface->mSurface),  
      mToken(surface->mToken), mIdentity(surface->mIdentity),  
      mFormat(surface->mFormat), mFlags(surface->mFlags),  
      mBufferMapper(GraphicBufferMapper::get()), mSharedBufferClient(NULL),  
      mWidth(surface->mWidth), mHeight(surface->mHeight)  
{  
    mSharedBufferClient = new SharedBufferClient(  
            mClient->mControl, mToken, 2, mIdentity);  

    init();  
}
Surface::Surface(const sp<SurfaceControl>& surface)
    : mClient(surface->mClient), mSurface(surface->mSurface),
      mToken(surface->mToken), mIdentity(surface->mIdentity),
      mFormat(surface->mFormat), mFlags(surface->mFlags),
      mBufferMapper(GraphicBufferMapper::get()), mSharedBufferClient(NULL),
      mWidth(surface->mWidth), mHeight(surface->mHeight)
{
    mSharedBufferClient = new SharedBufferClient(
            mClient->mControl, mToken, 2, mIdentity);

    init();
}

SharedBufferClient构造参数mClient->mControl就是共享内存块中的SharedClient对象,mToken就是SharedBufferStack 数组索引值。

到这里我们终于知道,Surface中的mSharedBufferClient成员和Layer中的lcblk成员 (SharedBufferServer),通过SharedClient中的同一个SharedBufferStack,共同管理着 Surface(Layer)中的两个缓冲区。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/flyingqr/article/details/6185420

智能推荐

什么是内部类?成员内部类、静态内部类、局部内部类和匿名内部类的区别及作用?_成员内部类和局部内部类的区别-程序员宅基地

文章浏览阅读3.4k次,点赞8次,收藏42次。一、什么是内部类?or 内部类的概念内部类是定义在另一个类中的类;下面类TestB是类TestA的内部类。即内部类对象引用了实例化该内部对象的外围类对象。public class TestA{ class TestB {}}二、 为什么需要内部类?or 内部类有什么作用?1、 内部类方法可以访问该类定义所在的作用域中的数据,包括私有数据。2、内部类可以对同一个包中的其他类隐藏起来。3、 当想要定义一个回调函数且不想编写大量代码时,使用匿名内部类比较便捷。三、 内部类的分类成员内部_成员内部类和局部内部类的区别

分布式系统_分布式系统运维工具-程序员宅基地

文章浏览阅读118次。分布式系统要求拆分分布式思想的实质搭配要求分布式系统要求按照某些特定的规则将项目进行拆分。如果将一个项目的所有模板功能都写到一起,当某个模块出现问题时将直接导致整个服务器出现问题。拆分按照业务拆分为不同的服务器,有效的降低系统架构的耦合性在业务拆分的基础上可按照代码层级进行拆分(view、controller、service、pojo)分布式思想的实质分布式思想的实质是为了系统的..._分布式系统运维工具

用Exce分析l数据极简入门_exce l趋势分析数据量-程序员宅基地

文章浏览阅读174次。1.数据源准备2.数据处理step1:数据表处理应用函数:①VLOOKUP函数; ② CONCATENATE函数终表:step2:数据透视表统计分析(1) 透视表汇总不同渠道用户数, 金额(2)透视表汇总不同日期购买用户数,金额(3)透视表汇总不同用户购买订单数,金额step3:讲第二步结果可视化, 比如, 柱形图(1)不同渠道用户数, 金额(2)不同日期..._exce l趋势分析数据量

宁盾堡垒机双因素认证方案_horizon宁盾双因素配置-程序员宅基地

文章浏览阅读3.3k次。堡垒机可以为企业实现服务器、网络设备、数据库、安全设备等的集中管控和安全可靠运行,帮助IT运维人员提高工作效率。通俗来说,就是用来控制哪些人可以登录哪些资产(事先防范和事中控制),以及录像记录登录资产后做了什么事情(事后溯源)。由于堡垒机内部保存着企业所有的设备资产和权限关系,是企业内部信息安全的重要一环。但目前出现的以下问题产生了很大安全隐患:密码设置过于简单,容易被暴力破解;为方便记忆,设置统一的密码,一旦单点被破,极易引发全面危机。在单一的静态密码验证机制下,登录密码是堡垒机安全的唯一_horizon宁盾双因素配置

谷歌浏览器安装(Win、Linux、离线安装)_chrome linux debian离线安装依赖-程序员宅基地

文章浏览阅读7.7k次,点赞4次,收藏16次。Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:..._chrome linux debian离线安装依赖

烤仔TVの尚书房 | 逃离北上广?不如押宝越南“北上广”-程序员宅基地

文章浏览阅读153次。中国发达城市榜单每天都在刷新,但无非是北上广轮流坐庄。北京拥有最顶尖的文化资源,上海是“摩登”的国际化大都市,广州是活力四射的千年商都。GDP和发展潜力是衡量城市的数字指...

随便推点

java spark的使用和配置_使用java调用spark注册进去的程序-程序员宅基地

文章浏览阅读3.3k次。前言spark在java使用比较少,多是scala的用法,我这里介绍一下我在项目中使用的代码配置详细算法的使用请点击我主页列表查看版本jar版本说明spark3.0.1scala2.12这个版本注意和spark版本对应,只是为了引jar包springboot版本2.3.2.RELEASEmaven<!-- spark --> <dependency> <gro_使用java调用spark注册进去的程序

汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用_uds协议栈 源代码-程序员宅基地

文章浏览阅读4.8k次。汽车零部件开发工具巨头V公司全套bootloader中UDS协议栈源代码,自己完成底层外设驱动开发后,集成即可使用,代码精简高效,大厂出品有量产保证。:139800617636213023darcy169_uds协议栈 源代码

AUTOSAR基础篇之OS(下)_autosar 定义了 5 种多核支持类型-程序员宅基地

文章浏览阅读4.6k次,点赞20次,收藏148次。AUTOSAR基础篇之OS(下)前言首先,请问大家几个小小的问题,你清楚:你知道多核OS在什么场景下使用吗?多核系统OS又是如何协同启动或者关闭的呢?AUTOSAR OS存在哪些功能安全等方面的要求呢?多核OS之间的启动关闭与单核相比又存在哪些异同呢?。。。。。。今天,我们来一起探索并回答这些问题。为了便于大家理解,以下是本文的主题大纲:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JCXrdI0k-1636287756923)(https://gite_autosar 定义了 5 种多核支持类型

VS报错无法打开自己写的头文件_vs2013打不开自己定义的头文件-程序员宅基地

文章浏览阅读2.2k次,点赞6次,收藏14次。原因:自己写的头文件没有被加入到方案的包含目录中去,无法被检索到,也就无法打开。将自己写的头文件都放入header files。然后在VS界面上,右键方案名,点击属性。将自己头文件夹的目录添加进去。_vs2013打不开自己定义的头文件

【Redis】Redis基础命令集详解_redis命令-程序员宅基地

文章浏览阅读3.3w次,点赞80次,收藏342次。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。此时,可以将系统中所有用户的 Session 数据全部保存到 Redis 中,用户在提交新的请求后,系统先从Redis 中查找相应的Session 数据,如果存在,则再进行相关操作,否则跳转到登录页面。当数据量很大时,count 的数量的指定可能会不起作用,Redis 会自动调整每次的遍历数目。_redis命令

URP渲染管线简介-程序员宅基地

文章浏览阅读449次,点赞3次,收藏3次。URP的设计目标是在保持高性能的同时,提供更多的渲染功能和自定义选项。与普通项目相比,会多出Presets文件夹,里面包含着一些设置,包括本色,声音,法线,贴图等设置。全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,主光源和附加光源在一次Pass中可以一起着色。URP:全局只有主光源和附加光源,主光源只支持平行光,附加光源数量有限制,一次Pass可以计算多个光源。可编程渲染管线:渲染策略是可以供程序员定制的,可以定制的有:光照计算和光源,深度测试,摄像机光照烘焙,后期处理策略等等。_urp渲染管线

推荐文章

热门文章

相关标签