硬件消抖——开关并联电容的那点事儿_按键并联电容消抖原理-程序员宅基地

技术标签: 经验分享  PCB  嵌入式  

硬件消抖——开关并电容的那点事儿

一年前做过的小脚丫的消抖实验和不消抖实验的区别,开关如果不消抖,产生的毛刺和电平变化确实给开关带来了不良影响,比如按键不灵,需要按暂停或者切换的时候要反复按多次才有随机概率实现需要的功能。所以对消抖的概念和重要性比较深刻。

昨天学习STM32的按键消抖知识,教程提到一点:

本实验板连接的按键带硬件消抖功能,见图 ,它利用电容充放电的延时,消除了波纹,从而简化软件的处理,软件只需要直接检测引脚的电平即可。
秉火STM32F429挑战者开发板硬件消抖原理图

基于上述原理图,作出关于该电容消抖效果实验的研究。以下内容为对本次实验的记录,其大纲如下:
1.首先基于原理图从理论角度对该滤波电路进行分析
2.用示波器对按键按下和松开时的波形进行检测
3.基于实验结果分析消抖电路
4.对电容并联开关的消抖电路进行简要总结

理论分析

该开关电路的原理图主要分为两种情况,第一种是按键按下时,第二种是按键松开时

假设按键没有按下时,电容C62和电阻R64串联在3V3的电源和地之间,电容两端的电压是3.3V。已知电容没有电位瞬变的能力,在按下按键的瞬间,电容的初始状态V(0)=3.3V,同时电容开始放电,两端电压逐渐减少。但是此时电容放电的回路中并没有串联任何的电阻,只是经过了按键开关而已,我们姑且认假设按键开关和导线的电阻在 1-10Ω之间,那么时间常数的计算t=RC=1×10^(-7)s,这里特别说明104的电容值指的是100nF(后续会给出为什么这里选择的电容值是100nF最为合适,这里我们先跳过)。
通过分析可以看到,在按键按下时,其电位从0V到3.3V的变化时长只需要ns级的变化。

现在我们开始推到按键松开时的情况。
按键松开时,电容的初始状态V(0)=3.3V,同时电容开始充电,两端电压逐渐增大。通过原理图我们可以看到,3V3的电源经过电阻4.7kΩ给电容进行充电,则时间常数t=RC=0.47ms
则我们可以看到,按键按下时,其电位从3.3V到0V的变化时长是100us级甚至到了ms级

那么,该电容是如何进行消抖的,我们可以把开关产生抖动的过程细化如下:
由于机械开关的弹性性能,我们在按下开关时,并不能一步到位直接将电位抬升到电源电压,而是产生了多次抖动,取其中一次抖动做出分析,则可以认为在该抖动过程中,开关做了一次关和开的动作,即按下之后立刻松开,通过上述分析,假设这次抖动持续的时间超过40ns级(前面分析是100ns,这里我们放松条件),则我们姑且认为电容两端的电位上升到了3.3V,因为前面分析过按键按下时其电位变化时间是100ns级。当抖动过程进入了开的动作,上述分析说过,从3.3V到0V的持续时间需要达到ms级别,也就是说产生一次持续时间超过40ns的抖动时,需要经过ms级的时间才能恢复到低电平完成一次有效的抖动对开关造成影响(这里指的是抖动足以被误读为一次按键动作),否则电位只会被抬升到高电平处而不会恢复到低电平。
对于没有超过40ns的抖动,我们可以认为持续时间不足以将电位抬升到3.3V,故不足以产生一次有效的抖动。

简单总结如下
在按键按下时产生的抖动,只有超过ms级的抖动才有可能是一次有效抖动,没有超过40ns的抖动不足以改变电位,超过40ns但是达不到ms级的抖动只会将电位拉到高电平,同时由于后续的抖动和真正的按键按下时的高电平的到来,可以认为电位会持续保持高电平直到按键松开。因此,所有的抖动都会因为第一次有效抖动的到来而被覆盖。
在按键松开时产生的抖动,超过40ns的抖动都可以将电位重新抬升到3.3V,故可以认为,只有在不抖动且按键完全松开时,其电位经过ms级的时间后恢复回低电平。因此,所有的抖动都会因为按键松开前是高电平而被覆盖。

上述分析是基于本人对弹性按键和电路的理解做出的合理推论分析,如有错误,不吝赐教。

在进行理论分析之后,为了确定我的分析思路无误,我在网上搜索了比较多的分析,其中有一篇文章的建模分析我觉得写的非常漂亮,值得参考学习,这里也推荐给各位道友:按键消抖电路瞬态电路分析

文章要点如下:
1.通过瞬态电路分析得到,按键在按下时电平变化的时间需要100ns级,在松开时电平变化时间需要100us-ms级别,和上述分析一致。
2.为了保证按键功能正常且具有良好的消抖效果,电容的容值为10-100nF级别最为合适。
3.电容并联开关的消抖电路具有消抖作用,但是会带来阻尼振荡,如果电路开关要求高,则不建议采用此类消抖电路。

实测结果

实验一:示波器检测按键波形

为了对分析进行验证,用示波器对我的想法进行验证。得到触发波形如下:
按键按下时的触发波形图一
按键松开时的触发波形
图二
无硬件消抖的按键响应
图三

其中图一是按键按下时的触发波形,图二是按键松开时的触发波形。
分析上图,按键按下时输出为高电平,如图一所示,此时可以看到从低电平到高电平,时间大概是200ns左右,中间伴有少量纹波(阻尼振荡),细心的朋友还可以发现实质上电路产生了两次阻尼振荡,这次暂时未推理验证,只是多次实验结果可以看到按键按下时都会有两次阻尼振荡,且第一次持续时间大概是30ns,第二次的持续时间大概是500ns。
图二展示的是按键松开时的波形,从高电平恢复到低电平,时间大概经过了1.7ms左右。同时多次测试表明,在电压下降前,总是伴随有比较明显的抖动,但抖动的电压变化较小,和上述原理分析相符合。且从时间数量级上看,和理论分析的结果相符合。

图三是没有硬件消抖的按键响应波形,可以看到,产生的按键抖动较多,持续时间大概为30us。

实验二:去掉滤波电容电路实验

为了进一步检验该消抖电路是否有效,本人拆除了滤波电容,进行了多次按键测试(测试基于野火STM32F429挑战者的点亮LED灯实验),实验结果如下:
带有硬件消抖电路的按键可以有效完成每次按键动作;
没有硬件消抖电路的按键出现按键动作失效的次数较多;

因此通过实验一和实验二,可以有充分的理由说明:

上述的理论分析是合理的,该消抖电路能起到一定的消抖作用,但是会带来阻尼振荡。

题外话

不知道读者有没有浏览过网上的资料,基本认为按键抖动的时间段大概是5-10ms左右,如下图所示:
在这里插入图片描述
百度百科上也是这么描述:
在这里插入图片描述这里需要说明的一点是,个人认为应该是网上的数据有问题,尽量用自己的实践来证明吧。

通过实际测试可以看到按键的抖动时间已经很短了,基本保持在500us以内。·偶尔出现的1ms以上个人认为是操作失误,正常的按键动作基本都是抖动500us以内。

总结结论

电容并联开关的硬件消抖电路具有一定的消抖作用,在要求不高的场合下可以使用,但是会产生阻尼振荡的现象,所以对于要求较高的电路,最好不采用电容并联开关的消抖电路,防止阻尼振荡产生的超量电压对电路造成的伤害。

上文分享的文章提到:

在开关旁串一个100Ω左右的电阻既可以起到良好的消抖效果,还可以解决阻尼振荡的问题(具体有待验证)

当然也是有代价的,即低电平会被抬高,但是相比较于另一个电阻,其阻值分到的压降不大,基本满足TTL电平要求。

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_38812860/article/details/109133935

智能推荐

while循环&CPU占用率高问题深入分析与解决方案_main函数使用while(1)循环cpu占用99-程序员宅基地

文章浏览阅读3.8k次,点赞9次,收藏28次。直接上一个工作中碰到的问题,另外一个系统开启多线程调用我这边的接口,然后我这边会开启多线程批量查询第三方接口并且返回给调用方。使用的是两三年前别人遗留下来的方法,放到线上后发现确实是可以正常取到结果,但是一旦调用,CPU占用就直接100%(部署环境是win server服务器)。因此查看了下相关的老代码并使用JProfiler查看发现是在某个while循环的时候有问题。具体项目代码就不贴了,类似于下面这段代码。​​​​​​while(flag) {//your code;}这里的flag._main函数使用while(1)循环cpu占用99

【无标题】jetbrains idea shift f6不生效_idea shift +f6快捷键不生效-程序员宅基地

文章浏览阅读347次。idea shift f6 快捷键无效_idea shift +f6快捷键不生效

node.js学习笔记之Node中的核心模块_node模块中有很多核心模块,以下不属于核心模块,使用时需下载的是-程序员宅基地

文章浏览阅读135次。Ecmacript 中没有DOM 和 BOM核心模块Node为JavaScript提供了很多服务器级别,这些API绝大多数都被包装到了一个具名和核心模块中了,例如文件操作的 fs 核心模块 ,http服务构建的http 模块 path 路径操作模块 os 操作系统信息模块// 用来获取机器信息的var os = require('os')// 用来操作路径的var path = require('path')// 获取当前机器的 CPU 信息console.log(os.cpus._node模块中有很多核心模块,以下不属于核心模块,使用时需下载的是

数学建模【SPSS 下载-安装、方差分析与回归分析的SPSS实现(软件概述、方差分析、回归分析)】_化工数学模型数据回归软件-程序员宅基地

文章浏览阅读10w+次,点赞435次,收藏3.4k次。SPSS 22 下载安装过程7.6 方差分析与回归分析的SPSS实现7.6.1 SPSS软件概述1 SPSS版本与安装2 SPSS界面3 SPSS特点4 SPSS数据7.6.2 SPSS与方差分析1 单因素方差分析2 双因素方差分析7.6.3 SPSS与回归分析SPSS回归分析过程牙膏价格问题的回归分析_化工数学模型数据回归软件

利用hutool实现邮件发送功能_hutool发送邮件-程序员宅基地

文章浏览阅读7.5k次。如何利用hutool工具包实现邮件发送功能呢?1、首先引入hutool依赖<dependency> <groupId>cn.hutool</groupId> <artifactId>hutool-all</artifactId> <version>5.7.19</version></dependency>2、编写邮件发送工具类package com.pc.c..._hutool发送邮件

docker安装elasticsearch,elasticsearch-head,kibana,ik分词器_docker安装kibana连接elasticsearch并且elasticsearch有密码-程序员宅基地

文章浏览阅读867次,点赞2次,收藏2次。docker安装elasticsearch,elasticsearch-head,kibana,ik分词器安装方式基本有两种,一种是pull的方式,一种是Dockerfile的方式,由于pull的方式pull下来后还需配置许多东西且不便于复用,个人比较喜欢使用Dockerfile的方式所有docker支持的镜像基本都在https://hub.docker.com/docker的官网上能找到合..._docker安装kibana连接elasticsearch并且elasticsearch有密码

随便推点

Python 攻克移动开发失败!_beeware-程序员宅基地

文章浏览阅读1.3w次,点赞57次,收藏92次。整理 | 郑丽媛出品 | CSDN(ID:CSDNnews)近年来,随着机器学习的兴起,有一门编程语言逐渐变得火热——Python。得益于其针对机器学习提供了大量开源框架和第三方模块,内置..._beeware

Swift4.0_Timer 的基本使用_swift timer 暂停-程序员宅基地

文章浏览阅读7.9k次。//// ViewController.swift// Day_10_Timer//// Created by dongqiangfei on 2018/10/15.// Copyright 2018年 飞飞. All rights reserved.//import UIKitclass ViewController: UIViewController { ..._swift timer 暂停

元素三大等待-程序员宅基地

文章浏览阅读986次,点赞2次,收藏2次。1.硬性等待让当前线程暂停执行,应用场景:代码执行速度太快了,但是UI元素没有立马加载出来,造成两者不同步,这时候就可以让代码等待一下,再去执行找元素的动作线程休眠,强制等待 Thread.sleep(long mills)package com.example.demo;import org.junit.jupiter.api.Test;import org.openqa.selenium.By;import org.openqa.selenium.firefox.Firefox.._元素三大等待

Java软件工程师职位分析_java岗位分析-程序员宅基地

文章浏览阅读3k次,点赞4次,收藏14次。Java软件工程师职位分析_java岗位分析

Java:Unreachable code的解决方法_java unreachable code-程序员宅基地

文章浏览阅读2k次。Java:Unreachable code的解决方法_java unreachable code

标签data-*自定义属性值和根据data属性值查找对应标签_如何根据data-*属性获取对应的标签对象-程序员宅基地

文章浏览阅读1w次。1、html中设置标签data-*的值 标题 11111 222222、点击获取当前标签的data-url的值$('dd').on('click', function() { var urlVal = $(this).data('ur_如何根据data-*属性获取对应的标签对象

推荐文章

热门文章

相关标签